Acknowledgement
This work was supported by a grant from the New Breeding Technologies Development Program (Project No. RS-2022-RD010342). Rural Development Administration and basic science research program through the National Research Foundation of Korea (NRF) funded by the ministry education (2022R1A2C1092904) Republic of Korea.
References
- Bewley JD and Black M (1982) Physiology and biochemistry of seeds in relation to germination volume 2: viability, dormancy, and environmental control. Springer Berlin, Heidelberg, Germany
- Bailey PC, McKibbin RS, Lenton JR, Holdsworth MJ, Flintham JE and Gale MD (1999) Genetic map locations for orthologous Vp1 genes in wheat and rice. Theor Appl Genet 98, 281-284 https://doi.org/10.1007/s001220051069
- Li C, Ni P, Francki M et al (2004) Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison. Funct Integr Genomics 4, 84-93 https://doi.org/10.1007/s10142-004-0104-3
- Zhang Y, Miao X, Xia X and He Z (2014) Cloning of seed dormancy genes (TaSdr) associated with tolerance to preharvest sprouting in common wheat and development of a functional marker. Theor Appl Genet 127, 855-866 https://doi.org/10.1007/s00122-014-2262-6
- Hattori I, Kumai S, Fukumi R and Bayorbor TB (1994) The effect of some additives on aerobic deterioration of corn silage. Anim Feed Sci Technol 65, 547-550 https://doi.org/10.2508/chikusan.65.547
- Nakamura S and Toyama T (2001) Isolation of a VP1 homologue from wheat and analysis of its expression in embryos of dormant and non-dormant cultivars. J Exp Bot 52, 875-876 https://doi.org/10.1093/jexbot/52.357.875
- Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT and Chua NH (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 32, 317-328 https://doi.org/10.1046/j.1365-313X.2002.01430.x
- De Laethauwer S, Reheul D, De Riek, J and Haesaert G (2012) Vp1 expression profiles during kernel development in six genotypes of wheat, triticale and rye. Euphytica 188, 61-70 https://doi.org/10.1007/s10681-011-0613-9
- Huang T, Qu B, Li HP, Zuo DY, Zhao ZX and Liao YC (2012) A maize viviparous 1 gene increases seed dormancy and preharvest sprouting tolerance in transgenic wheat. J Cereal Sci 55, 166-173 https://doi.org/10.1016/j.jcs.2011.11.003
- Jung YJ, Lee HJ, Bae S et al (2019) Acquisition of seed dormancy breaking in rice (Oryza sativa L.) via CRISPR/Cas9-targeted mutagenesis of OsVP1 gene. Plant Biotechnol Rep 13, 511-520 https://doi.org/10.1007/s11816-019-00580-x
- Fang J, Chai C, Qian Q et al (2008) Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice. Plant J 54, 177-189 https://doi.org/10.1111/j.1365-313X.2008.03411.x
- Gu XY, Liu T, Feng J, Suttle JC and Gibbons J (2010) The qSD12 underlying gene promotes abscisic acid accumulation in early developing seeds to induce primary dormancy in rice. Plant Mol Biol 73, 97-104 https://doi.org/10.1007/s11103-009-9555-1
- Dong Y, Tsuzuki E, Kamiunten H et al (2003) Identification of quantitative trait loci associated with pre-harvest sprouting resistance in rice (Oryza sativa L.). Field Crops Res 81, 133-139 https://doi.org/10.1016/S0378-4290(02)00217-4
- Gao FY, Ren GJ, Lu XJ et al (2008) QTL analysis for resistance to preharvest sprouting in rice (Oryza sativa). Plant Breed 127, 268-273 https://doi.org/10.1111/j.1439-0523.2007.01450.x
- Gu XY, Zhang L, Glover KD et al (2010) Genetic variation of seed dormancy in synthetic hexaploid wheat-derived populations. Crop Sci 50, 1318-1324 https://doi.org/10.2135/cropsci2009.11.0645
- Hori K, Sugimoto K, Nonoue Y et al (2010) Detection of quantitative trait loci controlling pre-harvest sprouting resistance by using backcrossed populations of japonica rice cultivars. Theor Appl Genet 120, 1547-1557 https://doi.org/10.1007/s00122-010-1275-z
- Sugimoto K, Takeuchi Y, Ebana K et al (2010) Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc Natl Acad Sci U S A 107, 5792-5797 https://doi.org/10.1073/pnas.0911965107
- Hsu PD, Lander ES and Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278 https://doi.org/10.1016/j.cell.2014.05.010
- Barrangou R and Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34, 933-941 https://doi.org/10.1038/nbt.3659
- Schaeffer SM and Nakata PA (2016) The expanding footprint of CRISPR/Cas9 in the plant sciences. Plant Cell Rep 35, 1451-1468 https://doi.org/10.1007/s00299-016-1987-x
- Gao X, Chen J, Dai X, Zhang D and Zhao Y (2016) An effective strategy for reliably isolating heritable and Cas9-free Arabidopsis mutants generated by CRISPR/Cas9-mediated genome editing. Plant Physiol 171, 1794-1800 https://doi.org/10.1104/pp.16.00663
- Pacher M and Puchta H (2017) From classical mutagenesis to nuclease-based breeding-directing natural DNA repair for a natural end-product. Plant J 90, 819-833 https://doi.org/10.1111/tpj.13469
- Jung YJ, Lee GJ, Bae S and Kang KK (2018) Reduced ethylene production in tomato fruits upon CRSPR/Cas9-mediated leMADS-RIN mutagenesis. Hortic Sci Technol 36, 396-405 https://doi.org/10.12972/kjhst.20180039
- Jung YJ, Kim JH, Lee HJ et al (2020) Generation and transcriptome profiling of Slr1-d7 and Slr1-d8 mutant lines with a new semi-dominant dwarf allele of SLR1 using the CRISPR/Cas9 system in rice. Int J Mol Sci 21, 5492
- Shaked H, Melamed-Bessudo C and Levy AA (2005) High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci U S A 102, 12265-12269 https://doi.org/10.1073/pnas.0502601102
- Even-Faitelson L, Samach A, Melamed-Bessudo C, Avivi-Ragolsky N and Levy AA (2011) Localized egg-cell expression of ef-fector proteins for targeted modification of the Arabidopsis genome. Plant J 68, 929-937 https://doi.org/10.1111/j.1365-313X.2011.04741.x
- Kwon YI, Abe K, Osakabe K et al (2012) Overexpression of OsRecQl4 and/or OsExo1 enhances DSB-induced homologous recombination in rice. Plant Cell Physiol 53, 2142-2152 https://doi.org/10.1093/pcp/pcs155
- Li T, Liu B, Chen CY and Yang B (2016) TALEN-mediated homologous recombination produces site-directed DNA base change and herbicide-resistant rice. J Genet Genom 43, 297-305 https://doi.org/10.1016/j.jgg.2016.03.005
- Komor AC, Kim YB, Packer MS, Zuris JA and Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424 https://doi.org/10.1038/nature17946
- Nishida K, Arazoe T, Yachie N et al (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729
- Gaudelli NM, Komor AC, Rees HA et al (2017) Programmable base editing of A.T to G.C in genomic DNA without DNA cleavage. Nature 551, 464-471 https://doi.org/10.1038/nature24644
- Anzalone AV, Randolph PB, Davis JR et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157 https://doi.org/10.1038/s41586-019-1711-4
- Butler NM, Baltes NJ, Voytas DF and Douches DS (2016) Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front Plant Sci 7, 1045
- Wang M, Lu Y, Botella JR, Mao Y, Hua K and Zhu JK (2017) Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system. Mol Plant 10, 1007-1010 https://doi.org/10.1016/j.molp.2017.03.002
- Gil-Humanes J, Wang Y, Liang Z, Shan Q and Ozuna CV (2017) High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89, 1251-1262 https://doi.org/10.1111/tpj.13446
- Hummel AW, Chauhan RD, Cermak T et al (2018) Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnol J 16, 1275-1282 https://doi.org/10.1111/pbi.12868
- Kim JH, Yu J, Kim HK et al (2022) Genome editing of golden SNP-carrying lycopene epsilon-cyclase (LcyE) gene using the CRSPR-Cas9/HDR and geminiviral replicon system in rice. Int J Mol Sci 23, 10383
- Aye AK (2014) Genome wide association study on the germination ability at low temperature and preharvest sprouting resistance in rice (Doctoral dissertation, University of Kongju)
- Gubler F, Millar AA and Jacobsen JV (2005) Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol 8, 183-187 https://doi.org/10.1016/j.pbi.2005.01.011
- Longxing T, Xi W, Huijuan T et al (2006) A physiological study on pre--harvest sprouting in rice. Zuo wu xue bao 32, 728-733
- Sugimoto K, Takeuchi Y, Ebana K et al (2010) Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc Natl Acad Sci U S A 107, 5792-5797 https://doi.org/10.1073/pnas.0911965107
- Gu XY, Foley ME, Horvath DP et al (2011) Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice. Genetics 189, 1515-1524 https://doi.org/10.1534/genetics.111.131169
- Ye H, Feng J, Zhang L et al (2015) Map-based cloning of seed dormancy1-2 identified a gibberellin synthesis gene regulating the development of endosperm-imposed dormancy in rice. Plant Physiol 169, 2152-2165 https://doi.org/10.1104/pp.15.01202
- Du L, Xu F, Fang J et al (2018) Endosperm sugar accumulation caused by mutation of PHS 8/ISA 1 leads to pre-harvest sprouting in rice. Plant J 95, 545-556 https://doi.org/10.1111/tpj.13970
- Xu F, Tang J, Gao S, Cheng X, Du L and Chu C (2019) Control of rice pre-harvest sprouting by glutaredoxin-mediated abscisic acid signaling. Plant J 100, 1036-1051 https://doi.org/10.1111/tpj.14501
- Chen H, Ruan J, Chu P et al (2020) AtPER1 enhances primary seed dormancy and reduces seed germination by suppressing the ABA catabolism and GA biosynthesis in Arabidopsis seeds. Plant J 101, 310-323 https://doi.org/10.1111/tpj.14542
- Wang Q, Lin Q, Wu T et al (2020) OsDOG1L-3 regulates seed dormancy through the abscisic acid pathway in rice. Plant Sci 298, 110570
- Lee HK, Willi M, Miller SM et al (2018) Targeting fidelity of adenine and cytosine base editors in mouse embryos. Nat Commun 9, 4804
- Hanley-Bowdoin L, Bejarano ER, Robertson D and Mansoor S (2013) Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol 11, 777-788 https://doi.org/10.1038/nrmicro3117
- Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA and Voytas DF (2014) DNA replicons for plant genome engineering. Plant Cell 26, 151-163 https://doi.org/10.1105/tpc.113.119792
- Vu TV, Sivankalyani V, Kim EJ et al (2020) Highly efficient homology-directed repair using CRISPR/Cpf1-geminiviral replicon in tomato. Plant Biotechnol J 18, 2133-2143 https://doi.org/10.1111/pbi.13373
- Blomme J, Develtere W, Kose A et al (2022) The heat is on: a simple method to increase genome editing efficiency in plants. BMC Plant Biol 22, 142
- Shu K, Liu XD, Xie Q and He ZH (2016) Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant 9, 34-45 https://doi.org/10.1016/j.molp.2015.08.010
- Skubacz A, Daszkowska-Golec A and Szarejko I (2016) The role and regulation of ABI5 (ABA-Insensitive 5) in plant development, abiotic stress responses and phytohormone crosstalk. Front Plant Sci 7, 1884