• Title/Summary/Keyword: horse breeds

Search Result 34, Processing Time 0.019 seconds

Genetic Relationship among the Korean Native and Alien Horses Estimated by Microsatellite Polymorphism

  • Cho, G.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.6
    • /
    • pp.784-788
    • /
    • 2006
  • Microsatellite polymorphism and the genetic relationship were estimated using genotype information of 305 horses from 11 microsatellite loci. The breeds include the indigenous Korean breeds, Korean native horse (102) and Jeju racing horse (56) together with Japan Hokkaido horse (5), Mongolian horse (19), Thoroughbred horse (108), Quarter horse (11) and Przewalskii horse (4). Allelic frequencies, the number of alleles per locus were estimated by direct counting from observed genotype, and genetic variability was computed using the CERVUX software and DISPAN. The number of alleles per locus varied from 6 (HMS6) to 18 (ASB17) with an average value of 10.45 in horse breeds. The expected total heterozygosity ($H_T$) and coefficient of gene differentiation ($G_{ST}$) ranged 0.764-0.921 (the average value was 0.830) and 0.102-0.266 (the average value was 0.180) in horse breeds, respectively. Four populations (Przewalskii horse, Japan Hokkaido horse, Quarter horse, Thoroughbred horse) showed lower heterozygosity than the average value (the average value was 0.710). The expected heterozygosity within breed ($H_S$) and mean no. of observed alleles ranged from $0.636{\pm}0.064$ (Japan Hokkaido horse) to $0.809{\pm}0.019$ (Mongolian horse), and from 2.73 (Przewalskii horse) to 8.27 (Korean native horse), respectively. The polymorphic information content (PIC) ranged from 0.490 (Przewalskii horse) to 0.761 (Mongolian horse) with an average value of 0.637 in horse breeds. The results showed three distinct clusters with high bootstrap support: the Korean native horse cluster (Korean native horse, Mongolian horse), the European cluster (Przewalskii horse, Thoroughbred horse), and other horse cluster (Jeju racing horse, Japan Hokkaido horse, and Quarter horse). A relatively high bootstrap value was observed for the Korean native horse cluster and European cluster (87%), and the Korean native horse and Mongolian horse (82%). Microsatellite polymorphism data were shown to be useful for estimating the genetic relationship between Korean native horse and other horse breeds, and also be applied for parentage testing in those horse breeds.

Assessment of Genetic Diversity of Horse Breeds Using Microsatellite Makers (Microsatellite makers를 이용한 마품종 간의 평가 및 유전적 다양성)

  • Jung, Ji-Hye;Lee, Mi-Rang;Ha, Tae-Yong;Kim, Seon-Ku;Shin, Teak-Soon;Kang, Han-Seok;Lee, Hong-Gu;Cho, Gil-Jae;Park, Kyung-Do;Cho, Byung-Wook
    • Journal of Life Science
    • /
    • v.19 no.2
    • /
    • pp.169-173
    • /
    • 2009
  • To assist in selection schemes we estimate the genetic diversity of the horse breeds. Genetic diversity at 13 microsatellite loci was compared in six horse breeds : Jeju Native Horse, American Quarter, Jeju Racing Horse, Mongolian Horse, Japanese Horse and Thoroughbred. All of the equine microsatellite used in this study were amplified and were polymorphic. The expected total heterozygosity over all the populations varied between 0.669 and 0.869 and the expected heterozygosity within population range from 0.569 to 0.219 in this study. The low coefficient of gene differentiation value showed that only 0.118 of the diversity was between horses breeds. The constructed dendrogram from the genetic distance matrix showed little differentiation between horse breeds using DISPAN program. The genetic distance using 13 microsatellites ranged between 0.137 and 0.414 for the six horse breeds. These results confirm the potential use of equine microsatellite loci as a tool for genetic studies in horse populations. The genetic diversity of the six horse breeds to each other closed to their geographical distribution. Suggesting that the loci would be suitable for horse breeds parentage testing. Therefore, Microsatellite marker seems to be very useful for clarifying the evolutionary relationships of closely related populations.

Genetic Diversity of mtDNA D-loop and Maternal Origin of Three Chinese Native Horse Breeds

  • Zhang, Tao;Lu, Hongzhao;Chen, Chen;Jiang, Hai;Wu, Sanqiao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.7
    • /
    • pp.921-926
    • /
    • 2012
  • In order to protect the genetic resource of native horse breeds, the genetic diversity of mitochondrial DNA (mtDNA) D-loop of three native horse breeds in western China were investigated. Forty-three 600 bp mtDNA D-loop sequences were analyzed by PCR and sequencing techniques, 33 unique haplotypes with 70 polymorphic sites were detected in these horses, which account for 11.67% of 600 bp sequence analyzed, showing the abundant genetic diversity of the three native horse breeds in western China. The Neighbour-Joining (NJ) phylogenetic tree based on 247 bp of 43 D-loop sequences demonstrated the presence of seven major lineages (A to G), indicating that the three native horse breeds in western China originated from multiple maternal origins. Consistent with the front, the NJ phylogenetic tree based on 600 bp of mtDNA D-loop sequences of 43 Chinese western native horses and 81 sequences of six horse breeds from GenBank indicated that the three horse breeds had distributed into the seven major lineages (A to G). The structure of the phylogenic tree is often blurred because the variation in a short segment of the mitochondrial genome is often accompanied by high levels of recurrent mutations. Consequently, longer D-loop sequences are helpful in achieving a higher level of molecular resolution in horses.

Development of Sequence Characterized Amplified Regions (SCAR) Showing for Cheju Native Horse (품종 특이성을 이용한 제주마 판별 표지인자 재발)

  • Cho Byung Wook
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.474-478
    • /
    • 2005
  • This study was conducted to analyze genetic characteristics and to develop the specific marker for Cheju native horse (Coo) at the level of sequence characterized amplified regions (SCARs). We collected blood samples from Cheju native horse and Thoroughbred horse (Th) and obtained genomic DNA from the blood of 50 individuals randomly selected within the breeds. Seven hundred primers were chosen randomly and were used to examin the polymorphism and 40 kinds of primers showed polymorphic RAPD band patterns between two breeds. Thirty primers of them showed horse specific bands. With the primer MG 30, amplified band of 2.0 kb showed the specificity to Cheju native horse (Cnh). Additionally MG 53 detected the thoroughbred horse (Th) specific markers at size of 2.3 kb. As the next, 2.3 kb band from MG 53 was checked with the all individuals from all the breeds of this study, and it maintained the reproducible breed specificity to thoroughbred horse (Th). With this results, 2.3 kb band was cloned into plasmid vector and sequenced bidirectionally from both ends of the cloned fragment. With the obtained sequences 10 nucleotide extended primers including the original arbitray primer were designed as a SCARs primer. Finally, the primer with extended sequence showed the reproducible breed differentiation pattern and it was possible to identify Cheju native horse (Cnh) from other breeds. The SCARs marker 2.3 kb from MG 53 could be used to identify Cheju native horse (Cnh) for not only registration but also horse breeding programe.

Genome-wide single-nucleotide polymorphism data and mitochondrial hypervariable region 1 nucleotide sequence reveal the origin of the Akhal-Teke horse

  • Zhoucairang Kang;Jinping Shi;Ting Liu;Yong Zhang;Quanwei Zhang;Zhe Liu;Jianfu Wang;Shuru Cheng
    • Animal Bioscience
    • /
    • v.36 no.10
    • /
    • pp.1499-1507
    • /
    • 2023
  • Objective: The study investigated the origin of the Akhal-Teke horse using genome-wide single-nucleotide polymorphism (SNP) data and mitochondrial hypervariable region 1 (HVR-1) nucleotide sequences Methods: Genome-wide SNP data from 22 breeds (481 horses) and mitochondrial HVR-1 sequences from 24 breeds (544 sequences) worldwide to examine the origin of the Akhal-Teke horse. The data were analyzed using principal component analysis, linkage disequilibrium analysis, neighbor-joining dendrograms, and ancestry inference to determine the population relationships, ancestral source, genetic structure, and relationships with other varieties. Results: A close genetic relationship between the Akhal-Teke horse and horses from the Middle East was found. Analysis of mitochondrial HVR-1 sequences showed that there were no shared haplotypes between the Akhal-Teke and Tarpan horses, and the mitochondrial data indicated that the Akhal-Teke horse has not historically expanded its group. Ancestral inference suggested that Arabian and Caspian horses were the likely ancestors of the Akhal-Teke horse. Conclusion: The Akhal-Teke horse originated in the Middle East.

Genetic diversity and relationship of Halla horse based on polymorphisms in microsatellites

  • Jung, Ji Su;Seong, Jiyeon;Lee, Gwang Hyeon;Kim, Yesong;An, Je Hyun;Yun, Ji Hye;Kong, Hong Sik
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.2
    • /
    • pp.76-81
    • /
    • 2021
  • Halla horse is crossbreed between Jeju and Thoroughbred horses and is used for riding, racing and meat production. Thus, molecular genetic studies are needed to establish and preserve the industrially valuable Halla horses. This study aimed to analyses the genetic diversity and population structure through 12 microsatellite (MS) markers for Halla and putatively related 3 breeds (Jeju, Mongolian and Thoroughbred horses). On average, the number of alleles, observed heterozygosity (Hobs), expected heterozygosity (Hexp), and polymorphic information content (PIC) among all horses were 10, 0.767, 0.799, and 0.771, respectively. Neighbor-joining tree and STRUCTURE analysis showed that Halla horses were between Thoroughbred and Jeju horses, tend to more influenced by Thoroughbred horses. Therefore, these results could be considered for use as the basic genetic breed relationships resource among the horse breeds (Jeju, Mongolian, and Thoroughbred horses) related to the origins of the Halla horse.

Y-Single Nucleotide Polymorphisms Diversity in Chinese Indigenous Horse

  • Han, Haoyuan;Zhang, Qin;Gao, Kexin;Yue, Xiangpeng;Zhang, Tao;Dang, Ruihua;Lan, Xianyong;Chen, Hong;Lei, Chuzhao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1066-1074
    • /
    • 2015
  • In contrast to high genetic diversity of mitochondrial DNA (mtDNA), equine Y chromosome shows extremely low variability, implying limited patrilines in the domesticated horse. In this study, we applied direct sequencing and restriction fragment length polymorphism (RFLP) methods to investigate the polymorphisms of 33 Y chromosome specific loci in 304 Chinese indigenous horses from 13 breeds. Consequently, two Y-single nucleotide polymorphisms (SNPs) (Y-45701/997 and Y-50869) and one Y-indel (Y-45288) were identified. Of those, the Y-50869 (T>A) revealed the highest variation frequency (24.67%), whereas it was only 3.29% and 1.97% in Y-45288 (T/-) and Y-45701/997 (G>T) locus, respectively. These three mutations accounted for 27.96% of the total samples and identified five Y-SNP haplotypes, demonstrating genetic diversity of Y chromosome in Chinese horses. In addition, all the five YSNP haplotypes were shared by different breeds. Among 13 horse breeds analyzed, Balikun horse displayed the highest nucleotide diversity (${\pi}=5.6{\times}10^{-4}$) and haplotype diversity (h = 0.527), while Ningqiang horse showed the lowest nucleotide diversity (${\pi}=0.00000$) and haplotype diversity (h = 0.000). The results also revealed that Chinese horses had a different polymorphic pattern of Y chromosome from European and American horses. In conclusion, Chinese horses revealed genetic diversity of Y chromosome, however more efforts should be made to better understand the domestication and paternal origin of Chinese indigenous horses.

Analysis of genetic diversity and structure of Mongolian horse using microsatellite markers

  • Jehyun, An;Khaliunaa, Tseveen;Baatartsogt, Oyungerel;Hong Sik, Kong
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1226-1236
    • /
    • 2022
  • Mongolian horses are one of the oldest horse breeds, and are very important livestock in Mongolia as they are used in various fields such as transportation, food (milk, meat), and horse racing. In addition, research and preservation on pure Mongolian breeds are being promoted under the implementation of the new Genetics of Livestock Resources' act in Mongolia. However, despite the implementation of this act, genetic research on Mongolian horses using microsatellites (MS) has not progressed enough. Therefore, this study was conducted to analyze the genetic polymorphism of five breeds (Gobi shankh, Tes, Gal shar, Darkhad, and Undurshil) using 14 MS markers recommended by International Society for Animal Genetics (ISAG). The mean number of alleles (MNA) was 8.29, expected heterozygosity frequency (HExp) was 0.767, observed heterozygosity frequency (HObs) was 0.752, and polymorphism information content (PIC) was 0.729. The Nei's genetic distance analysis showed that the genetic distance between Gobi shankh and Darkhad horses was the farthest, and the other three breeds, Tes, Gal shar, and Undurshil were found to be close to each other. Similarly, the principal coordinate analysis (PCoA) and factorial correspondence analysis (FCA) showed that the Gobi shankh and Darkhad horses were genetically distinct from other breeds. On the other hand, it appears that Tes, Gal shar, and Undurshil horses, which are genetically similar, most likely interbred with each other. Therefore, it is expected that these results will help the conservation of genetic resources in Mongolia and the establishment of policies related to Mongolian horses.

Genetic Features of Cheju Horses based on Transferrin Gene Frequency (Transferrin 유전자빈도에 의한 제주마의 유전적 특성)

  • Yang, Y.H.;Kim, N.Y.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.15-22
    • /
    • 2004
  • To investigate genetic features and the allele distribution of transferrin gene in three Cheju horse groups (group I, 137 horses of Jeju institute; group II, 107 horses of farms; group III, 89 racing horses) and three foreign breeds(l03 Thoroughbred, 10 Mongolian and 5 American Quarter horses), transferrin gene exons 13, 15, and 16 were analyzed by SSCP. The allele frequencies of transferrin gene of these groups and breeds were used to calculate genetic distances and to test population differentiations. The Fst values were 0.067 between Cheju horse groups I and II, 0.070 between Cheju horse groups I and group III, 0.091 between Cheju horse group I and Mongolian breed, and 0.189 between Cheju horse group I and Thoroughbred breed. Cheju horse group I showed significant population differentiation from other two Cheju horse groups and three foreign breeds while Cheju horse group III showed significant population differentiation only from Cheju horse group I and Thoroughbred breed(p <0.05). Results indicate that three Cheju horse groups showed population differentiation between each other, suggesting genetic heterogeneity of Cheju horses.

Comparison of Fecal Microbiota of Mongolian and Thoroughbred Horses by High-throughput Sequencing of the V4 Region of the 16S rRNA Gene

  • Zhao, Yiping;Li, Bei;Bai, Dongyi;Huang, Jinlong;Shiraigo, Wunierfu;Yang, Lihua;Zhao, Qinan;Ren, Xiujuan;Wu, Jing;Bao, Wuyundalai;Dugarjaviin, Manglai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.9
    • /
    • pp.1345-1352
    • /
    • 2016
  • The hindgut of horses is an anaerobic fermentative chamber for a complex and dynamic microbial population, which plays a critical role in health and energy requirements. Research on the gut microbiota of Mongolian horses has not been reported until now as far as we know. Mongolian horse is a major local breed in China. We performed high-throughput sequencing of the 16S rRNA genes V4 hypervariable regions from gut fecal material to characterize the gut microbiota of Mongolian horses and compare them to the microbiota in Thoroughbred horses. Fourteen Mongolian and 19 Thoroughbred horses were used in the study. A total of 593,678 sequence reads were obtained from 33 samples analyzed, which were found to belong to 16 phyla and 75 genera. The bacterial community compositions were similar for the two breeds. Firmicutes (56% in Mongolian horses and 53% in Thoroughbred horses) and Bacteroidetes (33% and 32% respectively) were the most abundant and predominant phyla followed by Spirochaete, Verrucomicrobia, Proteobacteria, and Fibrobacteres. Of these 16 phyla, five (Synergistetes, Planctomycetes, Proteobacteria, TM7, and Chloroflexi) were significantly different (p<0.05) between the two breeds. At the genus level, Treponema was the most abundant genus (43% in Mongolian horses vs 29% in Thoroughbred horses), followed by Ruminococcus, Roseburia, Pseudobutyrivibrio, and Anaeroplasma, which were detected in higher distribution proportion in Mongolian horses than in Thoroughbred horses. In contrast, Oscillibacter, Fibrobacter, Methanocorpusculum, and Succinivibrio levels were lower in Mongolian horses. Among 75 genera, 30 genera were significantly different (p<0.05) between the two breeds. We found that the environment was one of very important factors that influenced horse gut microbiota. These findings provide novel information about the gut microbiota of Mongolian horses and a foundation for future investigations of gut bacterial factors that may influence the development and progression of gastrointestinal disease in horses.