DOI QR코드

DOI QR Code

Genetic diversity and relationship of Halla horse based on polymorphisms in microsatellites

  • Jung, Ji Su (Hankyong and Genetics) ;
  • Seong, Jiyeon (Genomic Informatics Center, Hankyong National University) ;
  • Lee, Gwang Hyeon (Department of Applied Biotechnology, The Graduate School of Hankyong National University) ;
  • Kim, Yesong (Department of Applied Biotechnology, The Graduate School of Hankyong National University) ;
  • An, Je Hyun (Department of Applied Biotechnology, The Graduate School of Hankyong National University) ;
  • Yun, Ji Hye (Department of Applied Biotechnology, The Graduate School of Hankyong National University) ;
  • Kong, Hong Sik (Hankyong and Genetics)
  • Received : 2021.03.08
  • Accepted : 2021.05.12
  • Published : 2021.06.30

Abstract

Halla horse is crossbreed between Jeju and Thoroughbred horses and is used for riding, racing and meat production. Thus, molecular genetic studies are needed to establish and preserve the industrially valuable Halla horses. This study aimed to analyses the genetic diversity and population structure through 12 microsatellite (MS) markers for Halla and putatively related 3 breeds (Jeju, Mongolian and Thoroughbred horses). On average, the number of alleles, observed heterozygosity (Hobs), expected heterozygosity (Hexp), and polymorphic information content (PIC) among all horses were 10, 0.767, 0.799, and 0.771, respectively. Neighbor-joining tree and STRUCTURE analysis showed that Halla horses were between Thoroughbred and Jeju horses, tend to more influenced by Thoroughbred horses. Therefore, these results could be considered for use as the basic genetic breed relationships resource among the horse breeds (Jeju, Mongolian, and Thoroughbred horses) related to the origins of the Halla horse.

Keywords

References

  1. Belkhir K, Borsa P, Chikhi L, Raufaste N. et al. 2003. GENETIX version 4.04.
  2. Berber N, Gaouar S, Leroy G, Kdidi S, Tabet Aouel N, Saidi Mehtar N. 2014. Molecular characterization and differentiation of five horse breeds raised in Algeria using polymorphic microsatellite markers. J. Anim. Breed. Genet. 131:387-394. https://doi.org/10.1111/jbg.12092
  3. Binns MM, Holmes NG, Holliman A, Scott AM. 1995. The identification of polymorphic microsatellite loci in the horse and their use in thoroughbred parentage testing. Br. Vet. J. 151:9-15. https://doi.org/10.1016/S0007-1935(05)80057-0
  4. Botstein D, White RL, Skolnick M, Davis RW. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32:314-331.
  5. Earl DA. 2001. Structure harvester v0.6.1. http://taylor0.biology.ucla.edu/struct_harvest/ [accessed on December 20, 2010].
  6. Ellegren H, Johansson M, Sandberg K, Andersson L. 1992. Cloning of highly polymorphic microsatellites in the horse. Anim. Genet. 23:133-142. https://doi.org/10.1111/j.1365-2052.1992.tb00032.x
  7. Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14:2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  8. Guerin G, Bertaud M, Amigues Y. 1994. Characterization of seven new horse microsatellites: HMS1, HMS2, HMS3, HMS5, HMS6, HMS7 and HMS8. Anim. Genet. 25:62. https://doi.org/10.1111/j.1365-2052.1994.tb00464.x
  9. Irvin Z, Giffard J, Brandon R, Breen M, Bell K. 1998. Equine dinucleotide repeat polymorphisms at loci ASB 21, 23, 25 and 37-43. Anim. Genet. 29:67.
  10. Lee JE, Shin JH, Yun YM, Lee KK, Lee H, Kweon OK, Yun YS, Suh JG, Shin NS, Seong JK. 2010. Genetic polymorphism of Jeju horses by microsatellite DNA markers in Korea. Lab. Anim. Res. 26:219-221. https://doi.org/10.5625/lar.2010.26.2.219
  11. Marklund S, Ellegren H, Eriksson S, Sandberg K, Andersson L. 1994. Parentage testing and linkage analysis in the horse using a set of highly polymorphic microsatellites. Anim. Genet. 25:19-23. https://doi.org/10.1111/j.1365-2052.1994.tb00399.x
  12. Marshall TC, Slate J, Kruuk LE, Pemberton JM. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7:639-655. https://doi.org/10.1046/j.1365-294x.1998.00374.x
  13. Nei M, Tajima F, Tateno Y. 1983. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J. Mol. Evol. 19:153-170. https://doi.org/10.1007/BF02300753
  14. Park SDE. 2001. The Excel microsatellite toolkit (version 3.1).
  15. Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945-959. https://doi.org/10.1093/genetics/155.2.945
  16. Saitou N and Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  17. Seo JH, Park KD, Lee HK, Kong HS. 2016. Genetic diversity of Halla horses using microsatellite markers. J. Anim. Sci. Technol. 58:40. https://doi.org/10.1186/s40781-016-0120-6
  18. Takezaki N, Nei M, Tamura K. 2010. POPTREE2: software for constructing population trees from allele frequency data and computing other population statistics with Windows interface. Mol. Biol. Evol. 27:747-752. https://doi.org/10.1093/molbev/msp312
  19. Tantia MS, Vijh RK, Mishra B, Kumar STB, Arora R. 2006. Multilocus genotyping to study population structure in three buffalo populations of India. Asian-Aust. J. Anim. Sci. 19:1071-1078. https://doi.org/10.5713/ajas.2006.1071
  20. van Haeringen H, Bowling AT, Stott ML, Lenstra JA, Zwaagstra KA. 1994. A highly polymorphic horse microsatellite locus: VHL20. Anim. Genet. 25:207.
  21. Wright DJ. 1965. General multiplicity theory. Proc. Lond. Math. Soc. s3-15:269-288. https://doi.org/10.1112/plms/s3-15.1.269