• Title/Summary/Keyword: horizontal loading

Search Result 498, Processing Time 0.037 seconds

Structural Behavior of Two-Seam Cold Formed Square CFT Column to Beam Connections (2심 냉간성형 각형 CFT기둥-보 접합부의 구조거동)

  • Oh, Heon-Keun;Kim, Sun-Hee;Park, Chan-Myun;Choi, Sung-Mo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.4
    • /
    • pp.81-90
    • /
    • 2012
  • The concrete-filled tube (CFT) column has the excellent structural performance. But it is difficult to connect with column and beam because of closed section. Its Solution, 2 members of ㄷchennel in which Internal diaphragm is installed were welded beforehand and the method of making Rectangular Steel Tube was proposed. According to upside and downside junction shape, Internal diaphragm suggested as symmetric specimen and asymmetric specimen. The upper and lower diaphragm of the Symmetric specimen used the same horizontal and The upper diaphragm of the Asymmetric specimen used the horizontal plate and the lower diaphragm used the vertically plate. In this research, 4 T-shape column to beam steps connections were tested with cyclic loading experiment in order to evaluate the structural capability of the offered connection. Symmetric specimens be a failure in 0.03rad from beam flange. And Asymmetric specimens be a failure in 0.05rad from column interface. The comparison results of All specimens shown similar to energy absorption capacity in 0.02rad.

Standardization of Stiffness Test Method of Non-bearing Lightweight Wall for building (건축용 비내력 경량벽체의 정적 수평하중저항성 시험방법의 표준화)

  • Kim, Jin-Sik;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.185-186
    • /
    • 2015
  • The use of non-bearing lightweight wall has increased recently due to the increase of high-rise buildings and supply of long-life housing. Lightweight wall has advantages such as reducing the self-weight of the building, convenience in installation, and shortening construction period, however, must have a sufficient strength to external force. This study standardized the stiffness (static horizontal load resistance) test method for lightweight walls by using the actual impact load obtained through the load analysis test conducted in the previous studies. The size of specimen was set up as height 2.4m and width 3.0m. Test apparatus and test methods were referred to BS 5234-2:1992. However, the loading level applied to the specimen was divided into 3 steps (3000N, 1000N, 500N) that can be applied selectively depending on the purpose of the wall. The deformation characteristics according to the same loading level were vary depending on the specimen's type, and the evaluation criteria for functional damage may vary depending on the material, method of construction, and purpose of wall. Therefore, we did not suggest unified evaluation criteria of the stiffness to the test results.

  • PDF

An Evaluation of Orthotropic Steel Bridge Deck Pavement Behavior Using Wheel Load Testing and 3D Finite Element Analysis (윤하중 시험과 유한요소해석을 통한 강상판 교면포장의 거동분석 연구)

  • Kim, Tae Woo;Choi, Ji Young;Lee, Hyun Jong;Baek, Jongeun;Ohm, Byung Sik
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.103-110
    • /
    • 2013
  • PURPOSES: The objective of this study is to analyze and evaluate the behavior of orthotropic steel bridge deck pavement using three-dimensional finite element analysis and full-scale wheel load testing. METHODS: Since the layer thickness and material properties used in the bridge deck pavement are different from its condition, it is very difficult to measure and access the behavior of bridge deck pavement in the field. To solve this problem, the full-scale wheel load testing was conducted on the PSMA/Mastic bridge deck pavement and the deflection of bridge deck and horizontal tensile strain on top of pavement were measured under the loading condition. Three-dimensional finite element analysis was conducted to predict the behavior of bridge deck pavement and the predicted deflection and tensile strain values are compared with measured values from the wheel loading testing. RESULTS: Test results showed that the predicted deflections are 10% lower than measured ones and the error between predicted and measured horizontal tensile strain values is less than 2% in the critical location. CONCLUSIONS: The fact indicates that the proposed the analysis is found to be accurate for estimating the behavior of bridge deck pavements.

Hysteretic Behavior of Precast Concrete Large Panel Structures Subjected to Horizontal Cyclic Loading (반복 횡하중을 받는 프리캐스트 대형 콘크리트 판구조의 이력특성에 관한 실험적 연구)

  • Seo, Soo-Yeon;Yi, Waon-Ho;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.253-260
    • /
    • 1999
  • Main objective of this study is to examine the hysteretic behaviors and to evaluate the capacity of precast concrete (PC) large panel structures simulated from the prototype of 15-story building, Two 1/2 scaled precast concrete wall specimens and one monolithic reinforced concrete specimen were designed and tested under the cyclic loading conditions. The main parameter of test specimens in PC large panel structure is the type of details for vertical continuity of vertical steel in horizontal joint. Also the behaviors of PC large panel structures are compared with that of monolithic reinforcement concrete wall structure. From the results, the stiffness and energy dissipation ratio of the precast concrete specimens are shown little bit lower than those of monolithic reinforced concrete specimen. In the PC large panel structures, the specimen connected vertically by welding (strong connection) showed higher strength than that of the specimen connected vertically by joint box. However the failure pattern of the former showed more brittle than that of the latter due to the diagonal compressive failure of wall panels.

  • PDF

Seismic performance of Bujian Puzuo considering scale ratio and vertical load effects

  • Yong-Hui Jiang;Jun-Xiao He;Lei Zhu;Lin-Lin Xie;Shuo Fang
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.447-458
    • /
    • 2024
  • This study investigated the influence of scale ratio and vertical load on the seismic performance of Puzuo joints in traditional Chinese timber structures. Three low-cyclic reversed loading tests were conducted on three scaled specimens of Bujian Puzuo in Yingxian Wooden Pagoda. This study focused on the deformation patterns and analyzed seismic performance under varying scale ratios and vertical loads. The results indicated that the slip and rotational deformations of Bujian Puzuo were the primary deformations. The scale of the specimen did not affect the layer where the maximum interlayer slip occurred, but it did decrease the proportion of slip deformation. Conversely, the reducing vertical load caused the layer with the maximum slippage and the position of the damaged Dou components to shift upward, and the proportion of slip deformation increased. When the vertical load was decreased by 3.7 times, the maximum horizontal bearing capacity under positive and negative loadings, initial stiffness, and energy dissipation of the specimen decreased by approximately 60%, 58.79%, 69.62%, and 57.93%, respectively. The horizontal bearing capacity under positive loading and energy dissipation of the specimen increased by 35.63% and 131.54%, when the specimen scale was doubled and the vertical load was increased by 15 times.

Temperature Distribution in Water Cascading Horizontal Retort (열수식 살균기의 온도 분포에 관한 연구)

  • Chung, Myong-Soo;Ahn, Tae-Hoe;Lee, Yong-Gab;Yoo, Moo-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.827-833
    • /
    • 1995
  • Temperature distribution tests for a water cascading horizontal retort utilizing superheated water with overpressure as a heating medium were carried out under three different loading conditions, that is, empty(P-0), half-fully(P-3000) and fully(P-6000) loaded operating conditions. Tank volume and full loading capacity of sterilizer used for this study were about 5,900 liter and 1,140 kg(6000 pouches having 190 g weight each), respectively. Set point condition for sterilization was $122^{\circ}C$, 23 minutes and pressure was maintained in the range of $1.8{\sim}2.0\;kg/cm^2$ during sterilization. For each experiment, time-temperature data and F values were obtained from temperature microprocessor($F_0$ monitor). There were significant variations in the temperature distribution at different positions in the sterilizer. The temperature distribution was also affected by the pouch loading condition significantly. The application of the temperature distribution test to a product (retort pouched curry sauce) was conducted at the fully(P-6000) loading condition. Although heat transfer parameters($f_h\;and\;f_c$), and F values were varied with the position of sterilizer, sensory evaluation showed that the temperature distribution of the sterilizer used in this study didn't affect the quality of retorted curry sauce.

  • PDF

The Load Distribution Characteristics of Pile Group under Lateral Loading (수평력을 받는 무리말뚝의 하중분담특성)

  • Ahn, Byungchul;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.3
    • /
    • pp.17-22
    • /
    • 2010
  • This paper analyzed the characteristics of p-multiplier and the load distribution of H-pile group installed in weathered soil under horizontal loading. The results of this study conducted in pile arrangement ($2{\times}3$, $3{\times}3$), the pile center to center spacing (2D, 4D, 6D), and soil density (relative density: 40%, 80%) were drawn as follows. As to the average horizontal loading applied to each pile in pile groups, the fewer number of piles was, the larger average horizontal resistance became. As the result of analysis on p-y curves of single piles and pile groups according to the pile distance and the soil density, as the pile spacing was increased from 2D to 6D, the interaction coefficients of pile group showed 0.85~0.94 (piles in the front row), 0.57~0.79 (piles in the middle row), and 0.60~0.71 (piles in the rear row) in the loose ground and showed 0.76~0.82 (piles in the front row), 0.58~0.73 (piles in the middle row), and 0.53~0.70 (piles in the rear row) in the dense ground. As above, the wider pile distance was, the larger interaction coefficient value was shown among piles. In addition, piles in the front row showed bigger interaction coefficients than that of piles in the middle and back row.

Experimental Study on the Behavior Characteristics of Single Steel Pile in Sand Subjected to Lateral Loadings (사질토 지반에서 수평하중에 따른 단일강관말뚝의 거동특성에 관한 실험적 연구)

  • Kim, Daehyeon;Lee, Tae-Gwang;Kim, Sun-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3548-3556
    • /
    • 2015
  • In order to fulfill the needs of reliable and economically feasible foundation, engineers should consider not only the working load that can endure extreme conditions but also apprehending precise behavior of continuous dynamic load while designing the foundation of offshore wind power generators. To actualize the foundation, a model pile was made in miniature. Also, calibration chamber was made and a 500mm height of sand-bed was made to perform "static lateral load experiment" and "repetitive loading experiment", total of two Lateral load tests. As a result, in Static Lateral load test, the bigger length/diameter of model pile led an increase in load displacement. However, when performing "Cyclic Lateral load test", the increase in number of under loading led the decrease in horizontal displacement from each repeated lateral load. While performing Static Lateral load test and repeated loading experiment, we could observe the decreasing in the rate of ultimate lateral load capacity increase of the pile. Also, it turned out that the higher relative density of the ground, the lower ultimate lateral load capacity by repeated horizontal loading.

A Study on the Horizontal Consolidation and Permeability Characteristics of Decomposed Mudstone Soil in Pohang (이암풍화토의 횡방향압밀 및 투수특성)

  • 김영수;김기영;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.31-42
    • /
    • 2000
  • Consolidation and permeability are major engineering properties of soil. In clay, coefficient of permeability and consolidation can be calculated by incremental loading consolidation test. However, it is known that the incremental loading test has several deficiencies including long testing time, non-uniform stress state, very soft clay and problem of back pressure saturation. Specially, it is not performed with horizontal consolidation test. Several methods have been proposed for obtaining reliable values of $C_v$. Among these, the square root of time-fitting method proposed by Taylor(1948) and logarithm of time-fitting method, also called Casagrande's method, are used extensively in soil engineering practice. But these methods are not amenable for the absence of initial linear portion and have the difficulties involved in distinguishing secondary compression from primary compression. Rowecell consolidation tests were carried out in this study with different trimming axis and sample size. The results were compared with those of other methods; Casagrande,$Taylor,\; Casagrande,\; Hyperbolic,\; \delta/t-logt$. From the results, we explained a relationship between horizontal coefficient of permeability and void ratio was obtained. Finally, the directly measured horizontal coefficient of permeability obtained by using the Rowecell was compared with the permeability derived indirectly from the consolidation test result.

  • PDF

Behavior of eccentrically inclined loaded footing resting on fiber reinforced soil

  • Kaur, Arshdeep;Kumar, Arvind
    • Geomechanics and Engineering
    • /
    • v.10 no.2
    • /
    • pp.155-174
    • /
    • 2016
  • A total of 104 laboratory model tests on a square footing subjected to eccentrically inclined loads supported by sand reinforced with randomly distributed polypropylene fibers were conducted in order to compare the results with those obtained from unreinforced sand and with each other. For conducting the model tests, uniform sand was compacted in a test box at one particular relative density of compaction. The effect of percentage of reinforcement used, thickness of the reinforced layer, angle of inclination of load to vertical and eccentricity of load applied on various prominent factors such as ultimate load, vertical settlement, horizontal deformation and tilt were investigated. An improvement in ultimate load, vertical settlement, horizontal deformation and tilt of foundation was observed with an increase in the percentage of fibers used and thickness of reinforced sand layer under different inclinations and eccentricities of load. A statistical model using non-linear regression analysis based on present experimental data for predicting the vertical settlement ($s_p$), horizontal deformation ($hd_p$) and tilt ($t_p$) of square footing on reinforced sand at any load applied was done where the dependent variable was predicted settlement ($s_p$), horizontal deformation ($hd_p$) and tilt ($t_p$) respectively.