• Title/Summary/Keyword: horizontal cut

Search Result 156, Processing Time 0.029 seconds

Shallow Failure Characteristics of Weathered Granite Soil Slope in accordance with the Rainfall Infiltration (강우침투에 따른 화강풍화토 사면의 얕은파괴 특성)

  • Kim, Sun-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2810-2818
    • /
    • 2009
  • In order to examine the characteristic of shallow failure in cut slopes composed of weathered granite soil, this study calculated critical permeability coefficient according to rainfall characteristic in Korea, performed stability analysis according to the representative physical properties of weathered granite soil distributed in Korea such as horizontal distance to the failure surface of cut slope, slope inclination, slope height, and the depth of wetting by rainfall, and analyzed the results. In the results of analyzing critical permeability coefficient, when the local rainfall characteristic was considered, the maximum critical permeability coefficient was $7.16{\times}10^{-4}cm/sec$. We judged that shallow failure according to wetting depth should be considered when rainfall below the critical rainfall intensity lasts longer than the minimum rainfall duration in cut slopes composed of weathered granite soil, which had a critical permeability coefficient lower than the maximum critical permeability coefficient. Furthermore, using simulated failure surface, this study could understand the characteristic of shallow failure in cut slopes based on the change in slope safety factor according to horizontal distance, wetting depth, and strength parameter.

Design Study of Automatic Cut-off Horizontal Valve for a LPG Cylinder (LP가스용 차단기능형 수평식 용기밸브에 대한 설계연구)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.80-84
    • /
    • 2015
  • In this paper, the valves for a LPG gas cylinder have been investigated on the body height and weight by comparing design data between typical automatic shut-off vertical and newly developed horizontal valves. The height of an automatic shut-off horizontal valve is radically reduced by 41~42% compared with that of a typical automatic shut-off vertical valve. And, the body weight of a horizontal valve is also reduced by 29~40% compared with that of a vertical shut-off valve. This result is just achieved by a structural design modification from typical vertical valve to horizontal arrangement of various valve components.

Solving a Path Assignment Problem using s-t Cuts (그래프의 s-t 절단을 이용한 경로 배정 문제 풀이)

  • Kim, Tae-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.141-147
    • /
    • 2009
  • We introduce a noble method to find a variation of the optimal path problem. The problem is to find the optimal decomposition of an original planar region such that the number of paths in the region is minimized. The paths are required to uniformly cover each subregion and the directions of the paths in each sub-region are required to be either entirely vertical or entirely horizontal. We show how we can transform the path problem into a graph s-t cut problem. We solve the transformed s-t cut problem using the Ford-Fulkerson method and show its performance. The approach can be used in zig-zag milling and layerd manufacturing.

Dynamic stability evaluation of nail stabilised vertical cuts in various site classes

  • Amrita;B.R. Jayalekshmi;R. Shivashankar
    • Geomechanics and Engineering
    • /
    • v.38 no.4
    • /
    • pp.421-437
    • /
    • 2024
  • The soil nailing method entails the utilisation of nails to reinforce and stabilise a zone of soil mass. This is widely used for various applications due to its effective performance under various loading conditions. The seismic response of 6m high vertical soil-nailed cut in various site classes under dynamic excitations has been investigated in this study considering various lengths and inclinations of nails. The influence of frequency content of dynamic excitation on the response of structure has been assessed through finite element analysis using time history data of three different earthquakes. The seismic stability of the nailed cut in retaining soil in various sites under El Centro, Kobe and Trinidad earthquake ground motion is evaluated based on maximum acceleration response, maximum horizontal deformation, earth pressure distribution on the wall and maximum axial force mobilised in nails. The optimum nail inclination is identified as 15° and a minimum nail length ratio of 0.7 is essential for a stable vertical cut under dynamic excitations.

A Study of Methodology Developing Reconstructed body using Styrofoam Boards (스티로폼 보드를 이용한 연구용 재현바디 제작 방법 연구)

  • Choi, Young-Lim;Nam, Yun-Ja
    • Fashion & Textile Research Journal
    • /
    • v.10 no.5
    • /
    • pp.713-720
    • /
    • 2008
  • The purpose of this study was to propose the method reproducing three dimensional figure data to a reconstructed body by the styrofoam board. To make the reconstructed body, the 3D figure data were rotated to make symmetry and the surfaces were edited. The horizontal curves were gathered equally-spaced based on the waist horizontal plane. we proposed the process to cut the styrofoam board according to the horizontal curves, to assemble them to organize the shape of the body figure and to coat the surface with the knitted. The 3-dimensional figure data of straight type, swayback type, lean-back type and bend-forward type were selected and the reconstructed bodies were made as above. And the compatibility was verified by the measurement comparison and deviations between 3-dimensional figure data and reconstructed body.

Computer-assisted horizontal translational osseous genioplasty: a simple method to correct chin deviation

  • Keyhan, Seied Omid;Azari, Abbas;Yousefi, Parisa;Cheshmi, Behzad;Fallahi, Hamid Reza;Valipour, Mohammad Amin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.36.1-36.5
    • /
    • 2020
  • Background: Different genioplasty techniques are applied for the adjustment of chin area deformities such as chin deviation. Results: Thirty patients with simple facial asymmetry due to chin deviation underwent computer-assisted horizontal translational osseous genioplasty. In this technique, a surgical guide was used to cut a bone strip from the side where the chin should be transferred to; then, the same bone strip was used for the filling of the gap that was formed on the opposite side. Conclusion: According to the experience gained from this study, the authors believe that computer-assisted horizontal translational osseous genioplasty is a simple and reliable technique for patients with facial asymmetry due to chin deviation.

Mechanical Properties of the Ground Improved by High Pressure Jet-Grouting and Analysis of Deformation of Propped Retaining Walls (고압분사주입공법으로 보강된 개량체의 특성 및 흙막이벽의 변형해석)

  • 심태섭;주승완
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.6
    • /
    • pp.98-105
    • /
    • 2000
  • Recently, the construction method of high pressure jet-grouting is in wide-use, for the purpose of structure foundation ground, reinforcing of ground behind propped retaining walls and cut-off in order to perform safe construction of underground excavation work. This study was performed a serious of tests of field permeability and unconfined compressive strength upon ground improved established on the ground behind propped retaining walls and examined proper jet mechanism by changing the construction parameter value of high pressure jet-grouting. In addition, we got the conclusion like the followings as a result of inspecting the condition of earth pressure distribution and deformation, using elasto-plastic method and FEM. 1. In that characteristics of strength of ground improved, with the same condition of construction parameter, unconfined compressive strength of sand gravel is shown bigger than that of silty sand by about 1.6 times and cut-off effect is shown to have effect of reducing the permeability of original ground by about 10$^{-2}$ ~10$^{-3}$ cm/s. 2. As a result of analysis of figures of horizontal displacing quantity of propped retaining walls materials regarding before and after High pressure jet- grouting through FEM, the reducing quantity of 0.1~0.3mm in maximum horizontal displacement is shown.

  • PDF

Evaluation of Machinability by various cutting conditions in high machining using ball nose-end mills -Effects of cutting orientation and cutting environments- (볼엔드밀을 이용한 고속가공에서 가공경로와 가공환경에 따른 가공성 평가)

  • 이채문;김석원;이득우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.297-301
    • /
    • 2002
  • High-speed machining generates concenter thermal/frictional damage at the cutting ed rapidly decreases the tool life. This paper I at determining the effect of cutter orienter the cutting environment on tool life, tool mechanism when down milling. In this paper, experiments were carried out in various tool and cutting environments, such as dry, wet compressed chilled air, tool life were measu evaluate machinability in high-speed milli difficult-to-cut material and die steel, Tool measured in horizontal upwards, horiz downwards, vertical upwards and vert downwards. In addition, tool life was measur dry, wet and compressed chilled air. For this a compressed chi1led-air system was manufact The results show that a horizontal cutter ori provided a longer tool life than a vertical orientation. With respect to the cutting envi compressed chilled air increased tool life. H the wet condition decreased tool life due thermal shock caused by excessive cooling high-speed mill ins and the compressed chilled had little effect.

  • PDF

Shear Performance of Post and Beam Construction by Pre-Cut Process (프리컷 방식을 적용한 기둥-보 공법의 수평전단내력)

  • Hwang, Kweonhwan;Park, Joo-Saeng;Park, Moon-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1-12
    • /
    • 2007
  • For the purpose of effective utilization of domestic second-grown larch as structural members, post and beam construction applying traditional construction to Japanese larch glulam members was adopted with processing by machine pre-cut method. In general, horizontal shear test by KS F 2154 is conducted to assess the horizontal shear properties of the wooden structure by post and beam construction. The frame was consisted of post and beam member with appropriate fasteners, and members have their own processed parts (notch, hole, etc.) that can be well-connected each other. The shear wall was consisted of the frame with screw-nail sheathed panel (OSB). The results of horizontal shear loading tests without vertical loads conducted on the frame and the shear wall structures, the maximum strengths were about 1.9 kN/m and about 9.7 kN/m, the shear rigidities were about 167 kN/rad, 8198 kN/rad, respectively. The strength proportion of the frame specimen was about 20% of the wall's and about 2% in initial stiffness. Nail failures are remarkable on the shear wall specimen with punching shears and shear failures. The shear load factor for the shear wall specimen by the method of Architectural Institute of Japan was 1.5, which was obtained by the bi-linear method. Loading method should be considered to obtain smooth load-deformation relationship. For the better shear performance of the structures, column base and post and beam connections and sheathed panel should be further examined as well.

Sensitivity Analyses of Influencing Factors on Slope Stability (사면안정성 영향인자의 민감도 분석)

  • Park, Byung-Soo;Jun, Sang-Hyun;Cho, Kwang-Jun;Yoo, Nam-Jae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.91-100
    • /
    • 2010
  • In this paper a sensitivity analysis about effects of influencing factors on the stability of soil cut and embankment slopes in field was performed. Slope stability analysis of slopes in field was carried out with dry, rainy and seismic conditions. As results of analyzing the sensitivity of factors for the dry and rainy conditions, effect of cohesion, internal friction angle and unit weight of soil on the stability of cut slope is more critical in the dry condition than in the rainy condition. However, their effects on the stability of embankment slope for both conditions are similar to each other. The horizontal seismic coefficient does also affect the stability within the similar range of values irrespective of dry or rainy conditions. Cohesion and internal friction angle are more dominant factors influencing the slope stability irrespective of dry or rainy conditions than unit weight of soil and the horizontal seismic coefficient.