DOI QR코드

DOI QR Code

Dynamic stability evaluation of nail stabilised vertical cuts in various site classes

  • Amrita (Department of Civil Engineering, National Institute of Technology Karnataka (NITK)) ;
  • B.R. Jayalekshmi (Department of Civil Engineering, National Institute of Technology Karnataka (NITK)) ;
  • R. Shivashankar (Department of Civil Engineering, National Institute of Technology Karnataka (NITK))
  • Received : 2023.10.22
  • Accepted : 2024.08.13
  • Published : 2024.08.25

Abstract

The soil nailing method entails the utilisation of nails to reinforce and stabilise a zone of soil mass. This is widely used for various applications due to its effective performance under various loading conditions. The seismic response of 6m high vertical soil-nailed cut in various site classes under dynamic excitations has been investigated in this study considering various lengths and inclinations of nails. The influence of frequency content of dynamic excitation on the response of structure has been assessed through finite element analysis using time history data of three different earthquakes. The seismic stability of the nailed cut in retaining soil in various sites under El Centro, Kobe and Trinidad earthquake ground motion is evaluated based on maximum acceleration response, maximum horizontal deformation, earth pressure distribution on the wall and maximum axial force mobilised in nails. The optimum nail inclination is identified as 15° and a minimum nail length ratio of 0.7 is essential for a stable vertical cut under dynamic excitations.

Keywords

References

  1. Babu, S.G.L. and Singh, V.P. (2008), "Numerical analysis of performance of soil nail walls in seismic conditions", ISET J. Earthq. Technol., 45(2), 31-40. Retrieved from https://iset.org.in/public/publications/57237.
  2. Briaud, J.L. and Lim, Y. (1997), "Soil-nailed wall under piled bridge abutment : Simulation and guidelines", J. Geotech. Geoenviron. Eng., 123(11), 1043-1050. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:11(1043).
  3. Brinkgreve, R.B.J., Engin, E. and Engin, H.K. (2010), "Validation of empirical formulas to derive model parameters for sands", Numer. Method. Geotech. Eng., 1, 137-142. https://doi.org/10.1201/b10551-25.
  4. Bryson, L.S. and Zapata-Medina, D.G. (2012), "Method for estimating system stiffness for excavation support walls", J. Geotech. Geoenviron. Eng., 138(9), 1104-1115. https://doi.org/10.1061/(asce)gt.1943-5606.0000683.
  5. Byrne, R.J., Cotton, D., Porterfield, J., Wolschlag, C. and Ueblacker, G. (1998), "Manual for design and construction monitoring of soil nail walls", Report No. FHWA-SA-96-69R; Fedeal Highway Administration, Washington, DC.
  6. Candia, G., Mikola, R.G. and Sitar, N. (2016), "Seismic response of retaining walls with cohesive backfill: Centrifuge model studies", Soil Dyn. Earthq. Eng., 90, 411-419. https://doi.org/10.1016/j.soildyn.2016.09.013.
  7. Choukeir, M., Juran, I. and Hanna, S. (1997), "Seismic design of reinforced-earth and soil-nailed structures", Ground Improvement, 1(4), 223-238. https://doi.org/10.1680/gi.1997.010404.
  8. Dashtara, H., Kolahdouzan, A.H., Saeedi-Azizkandi, A. and Baziar, M.H. (2019), "Numerical investigation on the displacements and failure mechanism of soil-nailed structures in seismic conditions", Proceedings of the 8th International Conference on Case Histories in Geotechnical Engineering, Geo-Congress, Philadelphia, Pennsylvania.
  9. El-Emam, M.M. (2018), "Experimental verification of current seismic analysis methods of reinforced soil walls", Soil Dyn. Earthq. Eng., 113, 241-255. https://doi.org/10.1016/j.soildyn.2018.06.006.
  10. Fan, C.C. and Luo, J.H. (2008), "Numerical study on the optimum layout of soil-nailed slopes", Comput. Geotech., 35(4), 585-599. https://doi.org/10.1016/j.compgeo.2007.09.002.
  11. Felio, G.Y., Vucetic, M., Hudson, M., Barar, O. and Chapman, R. (1990), "Performance of soil nailed walls during the October 17, 1989 Loma Prieta Earthquake", Proceedings of the 43rd Canadian Geotechnical Conference, Quebec, Canada.
  12. FEMA-450 (2003), "NEHRP recommended provisions for seismic regulations for new buildings and other structures", Building Seismic Safety Council for the Federal Emergency Management Agency; Washington, DC, USA.
  13. Finno, R.J. and Calvello, M. (2005), "Supported excavations: observational method and inverse modeling", J. Geotech. Geoenviron. Eng., 131(7), 826-836. https://doi.org/10.1061/(asce)1090-0241(2005)131:7(826).
  14. Giri, D. and Sengupta, A. (2009), "Dynamic behavior of small scale nailed soil slopes", Geotech. Geol. Eng., 27(6), 687-698. https://doi.org/10.1007/s10706-009-9268-x.
  15. Hong, Y.S., Chen, R.H., Wu, C.S. and Chen, J.R. (2005), "Shaking table tests and stability analysis of steep nailed slopes", Can. Geotech. J., 42(5), 1264-1279. https://doi.org/10.1139/t05-055.
  16. Jafarbeglou, M. and Kalantary, F. (2023), "Probabilistic optimization of nailing system for soil walls in uncertain condition", Geomech. Eng., 34(6), 597-609. https://doi.org/10.12989/gae.2023.34.6.597.
  17. Jianchun, W. and Rong, S. (2012), "Seismic analysis of soil nailed wall using finite element method", Adv. Mater. Res., 535, 2027-2031. https://doi.org/10.4028/www.scientific.net/AMR.535-537.2027.
  18. Juran, I. (1987), "Nailed-soil retaining structures : Design and practice", Transport. Res. Record, (1119), 139-150.
  19. Juran, I., Baudrand, G., Farrag, K. and Elias, V. (1990), "Kinematical limit analysis for design of soil-nailed structures", J. Geotech. Eng., 116(1), 54-72. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:1(54).
  20. Kaothon, P., Chhun, K.T. and Yune, C.Y. (2021), "Numerical evaluation on steep soil ‑ nailed slope using finite element method", Int. J. Geo-Eng., 12, 1-12. https://doi.org/10.1186/s40703-021-00159-y.
  21. Lazarte, C.A., Robinson, H., Gomez, J.E., Baxter, A., Cadden, A. and Berg, R. (2015), "Geotechnical engineering circular No. 7 soil nail walls reference manual", Developed following: AASHTO LRFD Bridge Design Specifications, 7th Ed., No. FHWA-NHI-14-007; National Highway Institute, US Department of Transportation Federal Highway Administration, Washington, DC.
  22. Li, J., Tham, L.G., Junaideen, S.M., Yue, Z.Q. and Lee, C.F. (2008), "Loose fill slope stabilization with soil nails: Full-scale test", J. Geotech. Geoenviron. Eng., 134(3), 277-288. https://doi.org/10.1061/ASCE1090-02412008134:3277.
  23. Lysmer, J. and Kuhlmeyer, R.L. (1969), "Finite element method for infinite media", J. Eng. Mech., 95, 859-877. https://doi.org/10.1061/JMCEA3.0001144.
  24. Maleki, M. and Mir Mohammad Hosseini, S.M. (2022), "Assessment of the Pseudo-static seismic behavior in the soil nail walls using numerical analysis", Innov. Infrastruct. Solutions, 7(4), 262. https://doi.org/10.1007/s41062-022-00861-5.
  25. Maleki, M., Khezri, A., Nosrati, M., Majdeddin, S. and Mohammad, M. (2023), "Seismic amplification factor and dynamic response of soil ‑ nailed walls", Model. Earth Syst. Environ., 9(1), 1181-1198. https://doi.org/10.1007/s40808-022-01543-y.
  26. Manjularani, P. and Manasa, C.K. (2017), "Static and dynamic analysis of soil nail wall and retaining wall for vertical cut", Proceedings of the International Conference on Current Trends in Engineering, Science and Technology. https://doi.org/10.21647/icctest/2017/49058.
  27. Mohamed, M.H., Ahmed, M. and Mallick, J. (2023), "Finite element modeling of the soil-nailing process in nailed-soil slopes", Appl. Sci., 13(4), 2139. https://doi.org/10.3390/app13042139.
  28. Moniuddin, M.K., Manjularani, P. and Govindaraju, L. (2016), "Seismic analysis of soil nail performance in deep excavation", Int. J. Geo-Eng., 7(1), 1-10. https://doi.org/10.1186/s40703-016-0030-y.
  29. Pak, A., Maleki, J., Aghakhani, N. and Yousefi, M. (2021), "Numerical investigation of stability of deep excavations supported by soil-nailing method", Geomech. Geoeng., 16(6), 434-451. https://doi.org/10.1080/17486025.2019.1680878.
  30. Plaxis (2021), 2D Reference manual, Version V21, PLAXIS BV, Delft, The Netherlands.
  31. Potyondy, J.G. (1961), "Skin friction between various soils and construction materials", Geotechnique, 11(4), 339-353. https://doi.org/10.1680/geot.1961.11.4.339
  32. Rabcewicz, L.V. (1964), "The new Austrian tunnelling method. part I", Water Power, 16, 453-457.
  33. Rotte, V.M. and Viswanadham, B.V.S. (2014), "Centrifuge and numerical model studies on the behaviour of soil-nailed slopes with and without slope facing", Tunn. Undergr. Constr., 242, 581-591. https://doi.org/10.1061/9780784413449.056.
  34. Sahoo, S., Manna, B. and Sharma, K.G. (2016), "Seismic stability analysis of un-reinforced and reinforced soil slopes", GeoChina, 3, 74-81. https://doi.org/10.1061/9780784480007.009.
  35. SCE 7-16 (2016), Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers/Structural Engineering Institute; Reston, VA.
  36. Schanz, T., Vermeer, P.A. and Bonnier, P.G. (1999), "The hardening soil model : Formulation and verification", Beyond 2000 in Computational Geotechnics - 10 Years of PLAXIS © 1999 Balkema, Rotterdam, Netherlands, 1-16. https://doi.org/10.1201/9781315138206-27.
  37. Sheikhbahaei, A., Halabian, A.M. and Hashemolhosseini, S.H. (2010), "Analysis of soil nailed walls under seismic excitations using finite difference method", Proceedings of the 5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, California.
  38. Singh, V.P. and Babu, S.G.L. (2010), "2D Numerical simulations of soil nail walls", Geotech. Geol. Eng., 28(4), 299-309. https://doi.org/10.1007/s10706-009-9292-x.
  39. Stocker, M.F., Korber, G.W., Gassler, G. and Gudehus, G. (1979), "Soil nailing", Proceedings of the International Conference on Soil Reinforcement, Paris, France.
  40. Tabaroei, A., Seyedi, S.T. and Pouraminian, M. (2023), "Performance of a Deep Excavation Reinforced by Soil-Nailing During an Earthquake Excitation", Iranian J. Sci. Technol. Transact. Civil Eng., 47, 3021-3031. https://doi.org/10.1007/s40996-023-01094-x.
  41. Tufenkjian, M.R. and Vucetic, M. (2000), "Dynamic failure mechanism of soil-nailed excavation models in centrifuge", J. Geotech. Geoenviron. Eng., 126(3), 227-235. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:3(227).
  42. Vucetic, M., Tufenkjian, M.R. and Doroudian, M. (1993), "Dynamic centrifuge testing of soil-nailed excavations", Geotech. Test. J., 16(2), 172-187. https://doi.org/10.1520/GTJ10034J.
  43. Wang, L., Zhang, G. and Zhang, J.M. (2010), "Nail reinforcement mechanism of cohesive soil slopes under earthquake conditions", Soils Found., 50(4), 459-469. https://doi.org/10.3208/sandf.50.459.
  44. Wei, X., Zou, J. and Chen, G. (2023), "Seismic stability analysis of heterogeneous slopes reinforced by inclined soil nails", Eur. J. Environ. Civil Eng., 27(16), 4544-4562. https://doi.org/10.1080/19648189.2023.2194938.
  45. Wong, I.H., Low, B.K., Pang, P.Y. and Raju, G.V.R. (1997), "Field performance of nailed soil wall in residual soil", J. Perform. Constr. Fac., 11(3), 105-112. https://doi.org/10.1061/(ASCE)0887-3828(1997)11:3(105).
  46. Yazdandoust, M. (2017), "Experimental study on seismic response of soil-nailed walls with permanent facing", Soil Dyn. Earthq. Eng., 98, 101-119. https://doi.org/10.1016/j.soildyn.2017.04.009.
  47. Yoo, M., Kwon, S.Y. and Hong, S. (2022), "Dynamic response evaluation of deep underground structures based on numerical simulation", Geomech. Eng., 29(3), 269-279. https://doi.org/10.12989/gae.2022.29.3.269.
  48. Zhang, G., Cao, J. and Wang, L. (2014), "Failure behavior and mechanism of slopes reinforced using soil nail wall under various loading conditions", Soils Found., 54(6), 1175-1187. https://doi.org/10.1016/j.sandf.2014.11.011.
  49. Zhang, W., Goh, A.T.C. and Xuan, F. (2015), "A simple prediction model for wall deflection caused by braced excavation in clays", Comput. Geotech., 63, 67-72. https://doi.org/10.1016/j.compgeo.2014.09.001.