• Title/Summary/Keyword: hopA1

Search Result 368, Processing Time 0.03 seconds

A Novel Opportunistic Greedy Forwarding Scheme in Wireless Sensor Networks

  • Bae, Dong-Ju;Choi, Wook;Kwon, Jang-Woo;Choo, Hyun-Seung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.753-775
    • /
    • 2010
  • Greedy forwarding is a key mechanism of geographic routing using distance as a metric. As greedy forwarding only uses 1-hop neighbor node information, it minimizes routing overhead and is highly scalable. In existing greedy forwarding schemes, a node selects a next forwarding node based only on the distance. However, the signal strength in a realistic environment reduces exponentially depending on the distance, so that by considering only the distance, it may cause a large number of data packet retransmissions. To solve this problem, many greedy forwarding schemes have been proposed. However, they do not consider the unreliable and asymmetric characteristics of wireless links and thus cause the waste of limited battery resources due to the data packet retransmissions. In this paper, we propose a reliable and energy-efficient opportunistic greedy forwarding scheme for unreliable and asymmetric links (GF-UAL). In order to further improve the energy efficiency, GF-UAL opportunistically uses the path that is expected to have the minimum energy consumption among the 1-hop and 2-hop forwarding paths within the radio range. Comprehensive simulation results show that the packet delivery rate and energy efficiency increase up to about 17% and 18%, respectively, compared with the ones in PRR${\times}$Distance greedy forwarding.

Selection of the Best Two-Hop AF Wireless Link under Multiple Antenna Schemes over a Fading Channel

  • Rahaman, Abu Sayed Md. Mostafizur;Islam, Md. Imdadul;Amin, M.R.
    • Journal of Information Processing Systems
    • /
    • v.11 no.1
    • /
    • pp.57-75
    • /
    • 2015
  • In evaluating the performance of a dual-hop wireless link, the effects of large and small scale fading has to be considered. To overcome this fading effect, several schemes, such as multiple-input multiple-output (MIMO) with orthogonal space time block codes (OSTBC), different combining schemes at the relay and receiving end, and orthogonal frequency division multiplexing (OFDM) are used in both the transmitting and the relay links. In this paper, we first make compare the performance of a two-hop wireless link under a different combination of space diversity in the first and second hop of the amplify-and-forward (AF) case. Our second task in this paper is to incorporate the weak signal of a direct link and then by applying the channel model of two random variables (one for a direct link and another for a relayed link) we get very impressive result at a low signal-to-noise ratio (SNR) that is comparable with other models at a higher SNR. Our third task is to bring other three schemes under a two-hop wireless link: use of transmit antenna selection (TAS) on both link with weak direct link, distributed Alamouti scheme in two-hop link and single relay antenna with OFDM subcarrier. Finally, all of the schemes mentioned above are compared to select the best possible model. The main finding of the paper is as follows: the use of MIMO on both hops but application TAS on both links with weak direct link and the full rate OFDM with the sub-carrier for an individual link provide a better result as compared to other models.

Performance Analysis of Mobile Multi-hop Relay Uplink System in Multicell Environments (멀티셀 환경에서 Mobile Multi-hop Relay 상향링크 시스템의 성능 분석)

  • Kim, Seung-Yeon;Kim, Se-Jin;Lee, Hyong-Woo;Ryu, Seung-Wan;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.394-400
    • /
    • 2010
  • Mobile Multi-hop Relaying (MMR) system can provide increased system capacity of wireless access network by coverage extension and enhanced transmission rate within the Base Station (BS) coverage area. The previous researches for the MMR system with a non-transparent mode Relay Station (RS) do not consider channel selection procedure of Mobile Station (MS), co-channel interference and Multi-hop Relay Base Station (MR-BS) coverage and RS coverage ratio in MMR system. In this paper, we investigate the performance of MMR uplink system in multicell environments with various topologies. The performance is presented in terms of call blocking probability, channel utilization, outage probability and system throughput by varying offered load. It is found that, for certain system parameters, the MMR uplink system achieve the maximum system throughput when MR-BS coverage to RS coverage ratio is 7.

Analysis of Three-Phase Multiple Access with Continual Contention Resolution (TPMA-CCR) for Wireless Multi-Hop Ad Hoc Networks

  • Choi, Yeong-Yoon;Nosratinia, Aria
    • Journal of Communications and Networks
    • /
    • v.13 no.1
    • /
    • pp.43-49
    • /
    • 2011
  • In this paper, a new medium access control (MAC) protocol entitled three-phase multiple access with continual contention resolution (TPMA-CCR) is proposed for wireless multi-hop ad hoc networks. This work is motivated by the previously known three-phase multiple access (TPMA) scheme of Hou and Tsai [2] which is the suitable MAC protocol for clustering multi-hop ad hoc networks owing to its beneficial attributes such as easy collision detectible, anonymous acknowledgment (ACK), and simple signaling format for the broadcast-natured networks. The new TPMA-CCR is designed to let all contending nodes participate in contentions for a medium access more aggressively than the original TPMA and with continual resolving procedures as well. Through the systematical performance analysis of the suggested protocol, it is also shown that the maximum throughput of the new protocol is not only superior to the original TPMA, but also improves on the conventional slotted carrier sense multiple access (CSMA) under certain circumstances. Thus, in terms of performance, TPMA-CCR can provide an attractive alternative to other contention-based MAC protocols for multi-hop ad hoc networks.

Efficient Radio Resource Allocation for Cognitive Radio Based Multi-hop Systems (다중 홉 무선 인지 시스템에서 효과적인 무선 자원 할당)

  • Shin, Jung-Chae;Min, Seung-Hwa;Cho, Ho-Shin;Jang, Youn-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.325-338
    • /
    • 2012
  • In this paper, a radio resource allocation scheme for a multi-hop relay transmission in cognitive radio (CR) system is proposed to support the employment of relay nodes in IEEE 802.22 standard for wireless regional area network (WRAN). An optimization problem is formulated to maximize the number of serving secondary users (SUs) under system constraints such as time-divided frame structure for multiplexing and a single resource-unit to every relay-hop. However, due to mathematical complexity, the optimization problem is solved with a sub-optimal manner instead, which takes three steps in the order of user selection, relay/path selection, and frequency selection. In the numerical analysis, this proposed solution is evaluated in terms of service rate denoting as the ratio of the number of serving SUs to the number of service-requesting SUs. Simulation results show the condition of adopting multi-hop relay and the optimum number of relaying hops by comparing with the performance of 1-hop system.

Improving the Performance of Multi-Hop Wireless Networks by Selective Transmission Power Control

  • Kim, Tae-Hoon;Tipper, David;Krishnamurthy, Prashant
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.1
    • /
    • pp.7-14
    • /
    • 2015
  • In a multi-hop wireless network, connectivity is determined by the link that is established by the receiving signal strength computed by subtracting the path loss from the transmission power. Two path loss models are commonly used in research, namely two-ray ground and shadow fading, which determine the receiving signal strength and affect the link quality. Link quality is one of the key factors that affect network performance. In general, network performance improves with better link quality in a wireless network. In this study, we measure the network connectivity and performance in a shadow fading path loss model, and our observation shows that both are severely degraded in this path loss model. To improve network performance, we propose power control schemes utilizing link quality to identify the set of nodes required to adjust the transmission power in order to improve the network throughput in both homogeneous and heterogeneous multi-hop wireless networks. Numerical studies to evaluate the proposed schemes are presented and compared.

Decision of Maximum Congestion Window Size for TCP Performance Improvement by Bandwidth and RTT Measurement in Wireless Multi-Hop Networks

  • Huh, In;Lee, Jae-Yong;Kim, Byung-Chul
    • Journal of Information Processing Systems
    • /
    • v.2 no.1
    • /
    • pp.34-38
    • /
    • 2006
  • In the wireless network, TCP performs poorly because it was originally designed for wired networks and does not take into consideration wireless characteristics such as mobility, high-loss probability, and hidden-terminal problems. In particular, in the wireless multi-hop networks, a large congestion window increases the probability of contention and packet losses, and TCP performance is degraded severely as a result. So, it is necessary to limit the TCP congestion window size in order keep the probability of contention loss in the system to a minimum. In this paper, we propose a new scheme for determining the maximum congestion window size based on the measured bandwidth and Round-Trip-Time (RTT). Using ns-2 simulation, we show that the proposed scheme reduces the probability of packet contention and improves TCP performance.

Energy-Conserving MAC Protocol in Ubiquitous Sensor Networks (유비쿼터스 센서 망에서의 에너지 절약형 매체접근 제어 프로토콜)

  • Yang, Hyun-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.177-185
    • /
    • 2008
  • Research on media access control (MAC) scheme for Wireless Sensor Network (WSN) has been mainly focused on energy efficiency improvement, while interest on latency is relatively weak. However, end-to-end latency could be a critical limitation specifically in the multi-hop network such as wireless multimedia sensor networks. In this paper we propose a media access control scheme with distributed transmission power control to Improve end-to-end transmission latency as well as reduce power consumption in multi-hop wireless sensor networks. According to the simulation results, the proposed scheme is turned out to be an energy efficient scheme with improved end-to-end transmission latency.

A Hybrid MAC Protocol for Wireless Sensor Networks Enhancing Network Performance (무선센서 네트워크에서 네트워크 성능을 향상시키는 하이브리드 MAC 프로토콜)

  • Kim, Seong-Cheol;Kim, Dong-Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.177-183
    • /
    • 2008
  • In this paper we suggest a hybrid MAC protocol for wireless sensor networks (WSN) to enhance network performance. The proposed MAC scheme is specifically designed for wireless sensor networks which consist of lots nodes. The contributions of this paper are: First, the proposed scheduling algorithm is independent of network topology. Even though the BS node has lots of one hop node in dense mode network, all the time slots can be assigned fully without increasing frequencies. Second, BS one hop nodes can use more than one time slots if necessary, so total network performance is increased. We compare the network performance of the proposed scheme with previous one, HyMAC [1].

  • PDF

A Cluster-Based Relay Station Deployment Scheme for Multi-Hop Relay Networks

  • Chang, Jau-Yang;Chen, Yun-Wei
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.84-92
    • /
    • 2015
  • Multi-hop relay networks have been widely considered as a promising solution to extend the coverage area and to reduce the deployment cost by deploying the relay stations (RSs) in mobile communication systems. Suitable deployment for the RSs is one of the most important features of the demand nodes (DNs) to obtain a high data transmission rate in such systems. Considering a tradeoff among the network throughput, the deployment budget, and the overall coverage of the systems, efficient RS deployment schemes and corresponding algorithms must be developed and designed. A novel cluster-based RS deployment scheme is proposed in this paper to select the appropriate deployment locations for the relay stations from the candidate positions. To make an ideal cluster distribution, the distances between the DNs are calculated when deploying the RSs. We take into account the traffic demands and adopt a uniform cluster concept to reduce the data transmission distances of the DNs. On the basis of the different candidate positions, the proposed scheme makes an adaptive decision for selecting the deployment sites of the RSs. A better network throughput and coverage ratio can be obtained by balancing the network load among the clusters. Simulation results show that the proposed scheme outperforms the previously known schemes in terms of the network throughput and the coverage ratio. Additionally, a suitable deployment budget can be implemented in multi-hop relay networks.