DOI QR코드

DOI QR Code

Efficient Radio Resource Allocation for Cognitive Radio Based Multi-hop Systems

다중 홉 무선 인지 시스템에서 효과적인 무선 자원 할당

  • 신정채 ((주)한화/화약 구미사업장 개발부) ;
  • 민승화 (충남대학교 전자공학과 차세대통신시스템 연구실) ;
  • 조호신 (경북대학교 전자공학부 이동통신 연구실) ;
  • 장윤선 (충남대학교 전자공학과 차세대통신시스템 연구실)
  • Received : 2012.02.08
  • Accepted : 2012.04.24
  • Published : 2012.05.30

Abstract

In this paper, a radio resource allocation scheme for a multi-hop relay transmission in cognitive radio (CR) system is proposed to support the employment of relay nodes in IEEE 802.22 standard for wireless regional area network (WRAN). An optimization problem is formulated to maximize the number of serving secondary users (SUs) under system constraints such as time-divided frame structure for multiplexing and a single resource-unit to every relay-hop. However, due to mathematical complexity, the optimization problem is solved with a sub-optimal manner instead, which takes three steps in the order of user selection, relay/path selection, and frequency selection. In the numerical analysis, this proposed solution is evaluated in terms of service rate denoting as the ratio of the number of serving SUs to the number of service-requesting SUs. Simulation results show the condition of adopting multi-hop relay and the optimum number of relaying hops by comparing with the performance of 1-hop system.

본 논문에서는 무선 인지(Cognitive Radio, CR) 기반의 다중 홉 릴레이 전송 환경에서 링크별 가용 주파수 자원을 할당하는 문제를 다룬다. 경로 탐색, 채널 센싱 및 판단, 자원 할당의 3단계 시나리오를 제시하고 컬러 다중 그래프 모델과 시분할 된 프레임 구조를 토대로 서비스 받는 사용자의 수를 최대화하는 최적화 문제로 수학적 모델링을 한다. 이에 대한 해법으로 단말 선택, 릴레이 및 경로 선택 그리고 각 홉별 주파수 자원 선택의 3단계로 구성되는 부 최적화된 종합적 자원관리 방안을 제시한다. 모의실험에서는 홉-별 시분할 된 프레임 구조를 가지는 셀룰러 기반 2차 시스템을 고려하였으며, 다중 홉 통신과 단일 홉 통신 간의 성능을 비교를 통해 무선인지 시스템에서 다중 홉 통신의 필요성을 보였다. 또한 다중 홉 통신 가운데 가장 우수한 홉 수와 그 환경에 대해 살펴보았다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. 김창주, "Cognitive Radio 기술 동향," 한국전자통신연구원 전자통신동향분석, 제21권, 제4호, pp.62-69, 2006년 8월
  2. J. Mitola, "Cognitive Radio for Flexible Mobile Multimedia Communications," in Proc. IEEE Workshop on Mobile Multimedia Comm., pp.3-10, Nov. 1999.
  3. S. Haykin, "Cognitive Radio: Brain-Empowered Wireless Communications," IEEE Journal on Selected Areas in Commun., vol.23, no.2, pp.201-220, Feb. 2005. https://doi.org/10.1109/JSAC.2004.839380
  4. 김진영, 인지 무선 통신, 인터비젼, 2008년.
  5. 한정애, 정상수, 전화숙, "Cognitive Raio 네트워크의 개요," 한국정보과학회 학술지, 제22권, 제2호, 2008년 11월.
  6. J. Heo, J. Shin, J. Nam, Y. Lee, J. G. Park, and H.-S. Cho, "Mathematical Analysis of Secondary User Traffic in Cognitive Radio System," in Proc. IEEE VTC 2008-Fall, pp.1-5, Sept. 2008.
  7. M. Herdin, "A Chunk Based OFDM Amplify-and-Forward Relaying Scheme for 4G Mobile Radio Systems," in Proc. IEEE ICC'06, Vol. 10, pp. 4507-4512, June 2006.
  8. W. Ying, Q. Xin-chun, W. Tong, and L. Bao-ling, "Power Allocation and Subcarrier Pairing Algorithm for Regenerative OFDM Relay Systems," in Proc. IEEE VTC2007-Spring, pp. 2727-2731, Apr. 2007.
  9. W. Wang, S. Yan and S. Yang, "Optimally Joint Subcarrier Matching and Power Allocation in OFDM Multihop System," EURASIP Journal on Advances in Signal Processing, vol. 2008, pp. 1-8, Jan. 2008.
  10. Z. Qi, Z. Jingmei, S. Chunju, W. Ying, and H. Rong, "Power Allocation for Regenerative Relay Channel with Rayleigh Fading," in Proc. IEEE VTC2004-Spring, vol. 2, pp. 1167-1171, May 2004.
  11. M. O. Hasna and M.-S. Alouini, "Optimal Power Allocation for Relayed Transmissions Over Rayleigh-Fading Channels," IEEE Trans. on Wireless Commun., vol. 3, No. 6, pp. 1999-2004, Nov. 2004. https://doi.org/10.1109/TWC.2004.833447
  12. J. Shi, Z.-Y. Zhang, P.-L. Qiu, and G.-D. Yu, "Subcarrier and Power Allocation for OFDMA-Based Regenerative Multi-hop Links," in Proc. IEEE WiCom 2005, vol. 1, pp. 207-210, Sept. 2005.
  13. Y. Li, W. Wang, J. Kong and M. Peng, "Subcarrier Pairing for Amplify-and-Forward and Decode-and-Forward OFDM Relay Links," IEEE Commun. Lett., Vol. 13, No. 4, Apr. 2009.
  14. G.-D. Y, Z.-Y. Zhang, Y. Chen, S. Chen, and P.-L. Qiu, "Power Allocation for Non-regenerative OFDM Relaying Channels," in Proc. IEEE WiCom 2005, Vol. 1, pp. 185-188, Sept. 2005.
  15. W. Wang, S. Yang, and L. Gao, "Comparison of Schemes for Joint Subcarrier Matching and Power Allocation in OFDM Decode-and-Forward Relay System," in Proc. IEEE ICC 2008, pp. 4983-4987, May 2008.
  16. W. Wang and X. Liu, "List-Coloring Based Channel Allocation for Open-Spectrum Wireless Networks," in Proc. IEEE VTC2005-Fall, pp. 690-694, Sept. 2005.
  17. Q. Wang and H. Zheng, "Route and Spectrum Selection in Dynamic Spectrum Networks," in Proc. IEEE CCNC 2006, vol. 1, pp. 625-629, Jan. 2006.
  18. X. Zhou, L. Lin, J. Wang, and X. Zhang, "Cross-layer Routing Design in Cognitive Radio Networks by Colored Multigraph Model," Wireless Personal Communications, vol. 49, No. 1, pp. 123-131, Apr. 2009. https://doi.org/10.1007/s11277-008-9561-7
  19. T. Peng, W. Wang, Q. Lu, and W. Wang, "Subcarrier Allocation Based on Water-filling Level in OFDMA-based Cognitive Radio Networks," in Proc. IEEE WiCom 2007, pp. 196-199, Sept. 2007.
  20. T. Weiss, J. Hillenbrand, A. Krohn, and F. K. Jondral, "Mutual Interference in OFDM-based Spectrum Pooling Systems," in Proc. IEEE VTC-2004 Spring, vol. 4, pp. 1873-1877, May 2004.
  21. G. Bansal, M. J. Hossain, and V. K. Bhargava, "Adaptive Power Loading for OFDM-based Cognitive Radio Systems," in Proc. IEEE ICC 2007, pp. 5137-5142, June 2007.
  22. S. Yan and X. Wang, "Power Allocation for Cognitive Radio Systems Based on Nonregenerative OFDM Relay Transmission," in Proc. IEEE WiCom 2009, pp. 1-4, Sept. 2009.
  23. S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, "The Broadcast Storm Problem in a Mobile Ad Hoc Network," in Proc. ACM MobiCom'99, pp. 151-162, Seattle and Washington USA, Aug.1999.
  24. N. Garg, M. Papatriantafilou, and P. Tsigas, "Distributed Long-Lived List Colouring: How to Dynamically Allocate Frequencies in Cellular Networks," Wireless Networks, vol. 8, Issue 1, pp. 49-60, Jan. 2002. https://doi.org/10.1023/A:1012719525108
  25. M. Biro, M. Hujter, and Z. Tuza, "Precoloring extensions. I. Interval graphs," Discrete Mathematics, vol. 100, no. 1-3, pp. 267-279, 1992. https://doi.org/10.1016/0012-365X(92)90646-W
  26. IEEE P802.22/D0.2, Draft Standard for Wireless Regional Area Networks Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Policies and procedures for operation in the TV Bands, Nov. 2006.
  27. IST-2003-507581 WINNER D3.2, ver 1.1, Description of identified new relay based radio network deployment concepts and first assessment by comparison against benchmarks of well known deployment concepts using enhanced radio interface technologies, Feb. 2005.
  28. C. Cordeiro, K. Challapali, D. Birru, and S. S. Nandagopalan, "IEEE 802.22: An Introduction to the First Wireless Standard based on Cognitive Radios," Journal of Communications, Vol. 1, No. 1, Apr. 2006.
  29. IEEE 802.22-05/0007r48, Functional Requirements for the 802.22 WRAN Standard, Nov. 2006.
  30. T. S. Rappaport, Wireless Communications, 2nd, Prentice Hall, 2002.
  31. H. Kang, H. Hong, and C. Kim, "Performance Evaluation of CR-based WRAN System using Spectrum Utilization Efficiency," in Proc. IEEE WiCom 2008, pp. 1-4, Oct. 2008.
  32. IEEE 802.16j-2009, IEEE Standard for Local and metropolitan area networks Part16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 1: Multihop Relay Specification, June 2009.