• Title/Summary/Keyword: homotopy theory

Search Result 30, Processing Time 0.02 seconds

A RELATIVE NAIELSEN COINCIDENCE NUMBER FOR THE COMPLEMENT, I

  • Lee, Seoung-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.709-716
    • /
    • 1996
  • Nielsen coincidence theory is concerned with the determinatin of a lower bound of the minimal number MC[f,g] of coincidence points for all maps in the homotopy class of a given map (f,g) : X $\to$ Y. The Nielsen Nielsen number $N_R(f,g)$ (similar to [9]) is introduced in [3], which is a lower bound for the number of coincidence points in the relative homotopy class of (f,g) and $N_R(f,g) \geq N(f,g)$.

  • PDF

Nonlinear stability analysis of porous sandwich beam with nanocomposite face sheet on nonlinear viscoelastic foundation by using Homotopy perturbation method

  • Rostamia, Rasoul;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.821-829
    • /
    • 2021
  • Nonlinear dynamic response of a sandwich beam considering porous core and nano-composite face sheet on nonlinear viscoelastic foundation with temperature-variable material properties is investigated in this research. The Hamilton's principle and beam theory are used to drive the equations of motion. The nonlinear differential equations of sandwich beam respect to time are obtained to solve nonlinear differential equations by Homotopy perturbation method (HPM). The effects of various parameters such as linear and nonlinear damping coefficient, linear and nonlinear spring constant, shear constant of Pasternak type for elastic foundation, temperature variation, volume fraction of carbon nanotube, porosity distribution and porosity coefficient on nonlinear dynamic response of sandwich beam are presented. The results of this paper could be used to analysis of dynamic modeling for a flexible structure in many industries such as automobiles, Shipbuilding, aircrafts and spacecraft with solar easured at current time step and the velocity and displacement were estimated through linear integration.

A nonlocal strain gradient theory for nonlinear free and forced vibration of embedded thick FG double layered nanoplates

  • Mahmoudpour, E.;Hosseini-Hashemi, SH.;Faghidian, S.A.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.103-119
    • /
    • 2018
  • In the present research, an attempt is made to obtain a semi analytical solution for both nonlinear natural frequency and forced vibration of embedded functionally graded double layered nanoplates with all edges simply supported based on nonlocal strain gradient elasticity theory. The interaction of van der Waals forces between adjacent layers is included. For modeling surrounding elastic medium, the nonlinear Winkler-Pasternak foundation model is employed. The governing partial differential equations have been derived based on the Mindlin plate theory utilizing the von Karman strain-displacement relations. Subsequently, using the Galerkin method, the governing equations sets are reduced to nonlinear ordinary differential equations. The semi analytical solution of the nonlinear natural frequencies using the homotopy analysis method and the exact solution of the nonlinear forced vibration through the Harmonic Balance method are then established. The results show that the length scale parameters give nonlinearity of the hardening type in frequency response curve and the increase in material length scale parameter causes to increase in maximum response amplitude, whereas the increase in nonlocal parameter causes to decrease in maximum response amplitude. Increasing the material length scale parameter increases the width of unstable region in the frequency response curve.

Large amplitude free vibration analysis of functionally graded nano/micro beams on nonlinear elastic foundation

  • Setoodeh, AliReza;Rezaei, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.209-220
    • /
    • 2017
  • The purpose of this paper is to study the geometrically nonlinear free vibration of functionally graded nano/micro beams (FGNBs) based on the modified couple stress theory. For practical applications, some analytical expressions of nonlinear frequencies for FGNBs on a nonlinear Pasternak foundation are developed. Hamilton's principle is employed to obtain nonlinear governing differential equations in the context of both Euler-Bernoulli and Timoshenko beam theories for a comprehensive investigation. The modified continuum theory contains one material length scale parameter to capture the size effect. The variation of two-constituent material along the thickness is modeled using Reddy's power-law. Also, the Mori-Tanaka method as an accurate homogenization technique is implemented to estimate the effective material properties of the FGNBs. The results are presented for both hinged-hinged and clamped-clamped boundary conditions. The nonlinear partial differential equations are reduced to ordinary differential equations using Galerkin method and then the powerful method of homotopy analysis is utilized to obtain the semi-analytical solutions. Eventually, the presented analytical expressions are used to examine the influences of the length scale parameter, material gradient index, and elastic foundation on the nonlinear free vibration of FGNBs.

A relative nielsen number in coincidence theory

  • Jang, Chan-Gyu;Lee, Sik
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.171-181
    • /
    • 1995
  • Nielsen coincidence theory is concerned with the estimation of a lower bound for the number of coincidences of two maps $f,g: X \longrightarrow Y$. For this purpose the so-called Nielsen number N(f,g) is introduced, which is a lower bound for the number of coincidences ([1]). The relative Nielsen number N(f : X,A) in the fixed point theory is introduced in [3], which is a lower bound for the number of fixed points for all maps in the relative homotopy class of f:(X,A) $\longrightarrow$ (X,A), and its estimation is given in [5].

  • PDF

STABLE SPLITTINGS OF BG FOR GROUPS WITH PERIODIC COHOMOLOGY AND UNIVERSAL STABLE ELEMENTS

  • Lim, Pyung-Ki
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.109-114
    • /
    • 1989
  • This paper deals with the classifying spaces of finite groups. To any finite group G we associate a space BG with the property that .pi.$_{1}$(BG)=G, .pi.$_{i}$ (BG)=0 for i>1. BG is called the classifying space of G. Consider the problem of finding a stable splitting BG= $X_{1}$$^{V}$ $X_{1}$$^{V}$..$^{V}$ $X_{n}$ localized at pp. Ideally the $X_{i}$ 's are indecomposable, thus displaying the homotopy type of BG in the simplest terms. Such a decomposition naturally splits $H^{*}$(BG). The main purpose of this paper is to give the classification theorem in stable homotopy theory for groups with periodic cohomology i.e. cyclic Sylow p-subgroups for p an odd prime and to calculate some universal stable element. In this paper, all cohomology groups are with Z/p-coefficients and p is an odd prime.prime.

  • PDF

Large amplitude forced vibration of functionally graded nano-composite plate with piezoelectric layers resting on nonlinear elastic foundation

  • Yazdi, Ali A.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.203-213
    • /
    • 2018
  • This paper presents a study of geometric nonlinear forced vibration of carbon nano-tubes (CNTs) reinforcement composite plates on nonlinear elastic foundations. The plate is bonded with piezoelectric layers. The von Karman geometric nonlinearity assumptions with classical plate theory are employed to obtain the governing equations. The Galerkin and homotopy perturbation method (HPM) are utilized to investigate the effect of carbon nano-tubes volume fractions, large amplitude vibrations, elastic foundation parameters, piezoelectric applied voltage on frequency ratio and primary resonance. The results indicate that the carbon nano-tube volume fraction, applied voltage and elastic foundation parameters have significant effect on the hardening response of carbon nanotubes reinforced composite (CNTRC) plates.

ON THE RATIONAL COHOMOLOGY OF MAPPING SPACES AND THEIR REALIZATION PROBLEM

  • Abdelhadi Zaim
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1309-1320
    • /
    • 2023
  • Let f : X → Y be a map between simply connected CW-complexes of finite type with X finite. In this paper, we prove that the rational cohomology of mapping spaces map(X, Y ; f) contains a polynomial algebra over a generator of degree N, where N = max{i, πi(Y)⊗ℚ ≠ 0} is an even number. Moreover, we are interested in determining the rational homotopy type of map(𝕊n, ℂPm; f) and we deduce its rational cohomology as a consequence. The paper ends with a brief discussion about the realization problem of mapping spaces.

FLOER MINI-MAX THEORY, THE CERF DIAGRAM, AND THE SPECTRAL INVARIANTS

  • Oh, Yong-Geun
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.363-447
    • /
    • 2009
  • The author previously defined the spectral invariants, denoted by $\rho(H;\;a)$, of a Hamiltonian function H as the mini-max value of the action functional ${\cal{A}}_H$ over the Novikov Floer cycles in the Floer homology class dual to the quantum cohomology class a. The spectrality axiom of the invariant $\rho(H;\;a)$ states that the mini-max value is a critical value of the action functional ${\cal{A}}_H$. The main purpose of the present paper is to prove this axiom for nondegenerate Hamiltonian functions in irrational symplectic manifolds (M, $\omega$). We also prove that the spectral invariant function ${\rho}_a$ : $H\;{\mapsto}\;\rho(H;\;a)$ can be pushed down to a continuous function defined on the universal (${\acute{e}}tale$) covering space $\widetilde{HAM}$(M, $\omega$) of the group Ham((M, $\omega$) of Hamiltonian diffeomorphisms on general (M, $\omega$). For a certain generic homotopy, which we call a Cerf homotopy ${\cal{H}}\;=\;\{H^s\}_{0{\leq}s{\leq}1}$ of Hamiltonians, the function ${\rho}_a\;{\circ}\;{\cal{H}}$ : $s\;{\mapsto}\;{\rho}(H^s;\;a)$ is piecewise smooth away from a countable subset of [0, 1] for each non-zero quantum cohomology class a. The proof of this nondegenerate spectrality relies on several new ingredients in the chain level Floer theory, which have their own independent interest: a structure theorem on the Cerf bifurcation diagram of the critical values of the action functionals associated to a generic one-parameter family of Hamiltonian functions, a general structure theorem and the handle sliding lemma of Novikov Floer cycles over such a family and a family version of new transversality statements involving the Floer chain map, and many others. We call this chain level Floer theory as a whole the Floer mini-max theory.

DIGITAL COVERING THEORY AND ITS APPLICATIONS

  • Kim, In-Soo;Han, Sang-Eon
    • Honam Mathematical Journal
    • /
    • v.30 no.4
    • /
    • pp.589-602
    • /
    • 2008
  • As a survey-type article, the paper reviews various digital topological utilities from digital covering theory. Digital covering theory has strongly contributed to the calculation of the digital k-fundamental group of both a digital space(a set with k-adjacency or digital k-graph) and a digital product. Furthermore, it has been used in classifying digital spaces, establishing almost Van Kampen theory which is the digital version of van Kampen theorem in algebrate topology, developing the generalized universal covering property, and so forth. Finally, we remark on the digital k-surface structure of a Cartesian product of two simple closed $k_i$-curves in ${\mathbf{Z}}^n$, $i{\in}{1,2}$.