References
- Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V. and Darabi, M.A. (2016), "Coupled longitudinal-transverserotational free vibration of post-buckled functionally graded first-order shear deformable micro- and nano-beams based on the Mindlin's strain gradient Theory", Appl. Math. Model., 40(23), 9872-9891. https://doi.org/10.1016/j.apm.2016.06.042
- Asghari, M., Rahaeifard, M., Kahrobaiyan, M.H. and Ahmadian, M.T. (2011), "The modified couple stress functionally graded Timoshenko beam formulation", Mater. Des., 32(3), 1435-1443. https://doi.org/10.1016/j.matdes.2010.08.046
- Bagdatli, S.M. (2015), "Non-linear transverse vibrations of tensioned nanobeams using nonlocal beam theory", Struct. Eng. Mech., 55(2), 281-298. https://doi.org/10.12989/sem.2015.55.2.281
- Bayat, M., Pakar, I. and Emadi, A. (2013), "Vibration of electrostatically actuated microbeam by means of homotopy perturbation method", Struct. Eng. Mech., 48(6), 823-831. https://doi.org/10.12989/sem.2013.48.6.823
- Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart. Struct. Syst., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837
- Ehyaei, J., Ebrahimi, F. and Salari, E. (2016), "Nonlocal vibration analysis of FG nano beams with different boundary conditions", Adv. Nano Res., 4(2), 85-111. https://doi.org/10.12989/anr.2016.4.2.085
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Jafari-Talookolaei, R.A., Salarieh, H. and Kargarnovin, M.H. (2011), "Analysis of large amplitude free vibrations of unsymmetrically laminated composite beams on a nonlinear elastic foundation", Acta Mech., 219, 65-75. https://doi.org/10.1007/s00707-010-0439-x
- Janghorban, M. and Zare, A. (2011), "Free vibration analysis of functionally graded carbon nanotubes with variable thickness by differential quadrature method", Physica. E Low Dimens. Syst. Nanostruct., 43(9), 1602-1604. https://doi.org/10.1016/j.physe.2011.05.002
- Jia, X.L., Ke, L.L., Feng, C.B., Yang, J. and Kitipornchai, S. (2015), "Size effect on the free vibration of geometrically nonlinear functionally graded micro-beams under electrical actuation and temperature change", Compos. Struct., 133, 1137-1148. https://doi.org/10.1016/j.compstruct.2015.08.044
- Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M. and Ahmadian, M.T. (2010), "Investigation of the size-dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1985-1994. https://doi.org/10.1016/j.ijengsci.2010.06.003
- Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2012), "Nonlinear free vibration of size-dependent functionally graded microbeams", Int. J. Eng. Sci., 50(1), 256-267. https://doi.org/10.1016/j.ijengsci.2010.12.008
- Ke, L.L., Yang, J., Kitipornchai, S. and Xiang, Y. (2009), "Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials", Mech. Adv. Mater. Struct., 16(6), 488-502. https://doi.org/10.1080/15376490902781175
- Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solid., 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Liao, S.J. (2004), Beyond perturbation: introduction to homotopy analysis method, CRC Press, Boca Raton.
- Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructuredependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solid., 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
- Malekzadeh, P. and Shojaee, M. (2013), "Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams", Compos. Part B-Eng., 52, 84-92. https://doi.org/10.1016/j.compositesb.2013.03.046
- Malekzadeh, P. and Shojaee, M. (2015), "A two-variable firstorder shear deformation theory coupled with surface and nonlocal effects for free vibration of nanoplates", J. Vib.. Control., 21, 2755-2772. https://doi.org/10.1177/1077546313516667
- Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couplestresses in linear elasticity", Arch. Ration. Mech. Anal., 11(1), 415-448. https://doi.org/10.1007/BF00253946
- Nateghi, A. and Salamat-talab, M. (2013), "Thermal effect on size dependent behavior of functionally graded micro beams based on modified couple stress theory", Compos. Struct., 96, 97-110. https://doi.org/10.1016/j.compstruct.2012.08.048
- Rao, S.S. (2007), Vibration of continuous systems. John Wiley & Sons, New Jersi.
- Schmid, S., Wagli, P. and Hierold, C. (2009, January), "Biosensor based on all-polymer resonant microbeams", Micro Electro Mechanical Systems, IEEE 22nd International Conference, 300-303.
- Sedighi, H.M., Chan-Gizian, M. and Noghreha-Badi, A. (2014), "Dynamic pull-in instability of geometrically nonlinear actuated micro-beams based on the modified couple stress theory", Lat. Am. J. Solid. Struct., 11(5), 810-825. https://doi.org/10.1590/S1679-78252014000500005
- Setoodeh, A.R. and Afrahim, S. (2014), "Nonlinear dynamic analysis of FG micro-pipes conveying fluid Based on strain gradient theory", Compos. Struct., 116, 128-135. https://doi.org/10.1016/j.compstruct.2014.05.013
- Setoodeh, A.R., Derahaki, M. and Bavi, N. (2015), "DQ thermal buckling analysis of embedded curved carbon nanotubes based on nonlocal elasticity theory", Lat. Am. J. Solid. Struct., 12(10), 1901-1917. https://doi.org/10.1590/1679-78251894
- Setoodeh, A.R., Rezaei, M. and Zendehdel Shahri, M.R. (2016), "Linear and nonlinear torsional free vibration of functionally graded micro/nano-tubes based on modified couple stress theory", Appl. Math. Mech., English Edition, 37, 1-16. https://doi.org/10.1007/s10483-016-2051-9
- Shenas, A.G. and Malekzadeh, P. (2016), "Free vibration of functionally graded quadrilateral microplates in thermal environment", Thin. Wall. Struct., 106, 294-315. https://doi.org/10.1016/j.tws.2016.05.001
- Taeprasartsit, S. (2013), "Nonlinear free vibration of thin functionally graded beams using the finite element method", J. Vib. Control., 1077546313484506. https://doi.org/10.1177/1077546313484506
- Thai, H.T. and Choi, D.H. (2013), "Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory", Compos. Struct., 95, 142-153. https://doi.org/10.1016/j.compstruct.2012.08.023
- Younis, M.I., Abdel-Rahman, E.M. and Nayfeh, A. (2003), "A reduced-order model for electrically actuated microbeam-based MEMS", J. Microelectromech. Syst., 12(5), 672-680. https://doi.org/10.1109/JMEMS.2003.818069
Cited by
- Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation vol.24, pp.1, 2017, https://doi.org/10.12989/scs.2017.24.1.065
- Modelling of graded rectangular micro-plates with variable length scale parameters vol.65, pp.5, 2017, https://doi.org/10.12989/sem.2018.65.5.573
- Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory vol.67, pp.4, 2017, https://doi.org/10.12989/sem.2018.67.4.417
- Non-stationary vibration and super-harmonic resonances of nonlinear viscoelastic nano-resonators vol.70, pp.5, 2017, https://doi.org/10.12989/sem.2019.70.5.623
- Size-dependent dynamic stability of a FG polymer microbeam reinforced by graphene oxides vol.73, pp.6, 2020, https://doi.org/10.12989/sem.2020.73.6.685