• Title/Summary/Keyword: homotopy analysis method

Search Result 20, Processing Time 0.03 seconds

THE CONVERGENCE OF HOMOTOPY METHODS FOR NONLINEAR KLEIN-GORDON EQUATION

  • Behzadi, Shadan Sadigh
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1227-1237
    • /
    • 2010
  • In this paper, a Klein-Gordon equation is solved by using the homotopy analysis method (HAM), homotopy perturbation method (HPM) and modified homotopy perturbation method (MHPM). The approximation solution of this equation is calculated in the form of series which its components are computed easily. The uniqueness of the solution and the convergence of the proposed methods are proved. The accuracy of these methods are compared by solving an example.

ANALYTICAL TECHNIQUES FOR SYSTEM OF TIME FRACTIONAL NONLINEAR DIFFERENTIAL EQUATIONS

  • Choi, Junesang;Kumar, Devendra;Singh, Jagdev;Swroop, Ram
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1209-1229
    • /
    • 2017
  • We coupled the so-called Sumudu transform with the homotopy perturbation method (HPM) and the homotopy analysis method (HAM), which are called homotopy perturbation Sumudu transform method (HPSTM) and homotopy analysis Sumudu transform method (HASTM), respectively. Then we show how HPSTM and HASTM are more convenient than HPM and HAM by conducting a comparative analytical study for a system of time fractional nonlinear differential equations. A Maple package is also used to enhance the clarity of the involved numerical simulations.

THE USE OF ITERATIVE METHODS FOR SOLVING NAVEIR-STOKES EQUATION

  • Behzadi, Shadan Sadigh;Fariborzi Araghi, Mohammad Ali
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.381-394
    • /
    • 2011
  • In this paper, a Naveir-Stokes equation is solved by using the Adomian's decomposition method (ADM), modified Adomian's decomposition method (MADM), variational iteration method (VIM), modified variational iteration method (MVIM), modified homotopy perturbation method (MHPM) and homotopy analysis method (HAM). The approximate solution of this equation is calculated in the form of series which its components are computed by applying a recursive relation. The existence and uniqueness of the solution and the convergence of the proposed methods are proved. A numerical example is studied to demonstrate the accuracy of the presented methods.

Nonlinear Dynamic Analysis of Space Truss by Using Multistage Homotopy Perturbation Method (시분할구간 호모토피 섭동법을 이용한 공간 트러스의 비선형 동적 해석)

  • Shon, Su-Deok;Ha, Jun-Hong;Lee, Seung-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.879-888
    • /
    • 2012
  • This study aims to apply multistage homotopy perturbation method(MHPM) to space truss composed of discrete members to obtain a semi-analytical solution. For the purpose of this research, a nonlinear governing equation of the structures is formulated in consideration of geometrical nonlinearity, and homotopy equation is derived. The result of carrying out dynamic analysis on a simple model is compared to a numerical method of 4th order Runge-Kutta method(RK4), and the dynamic response by MHPM concurs with the numerical result. Besides, the displacement response and attractor in the phase space is able to delineate dynamic snapping properties under step excitations and the responses of damped system are reflected well the reduction effect of the displacement.

Analysis of interlinked separation processes using homotopy continuation methods (Homotopy continuation 방법을 이용한 다탑 분리 공정의 해석)

  • 한경택;이강주;윤인섭;김화용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.93-98
    • /
    • 1991
  • An improved and flexible matrix algorithm for solving interlinked separation problems which is based on the homotopy continuation method has been developed. A flexible model of the interlinked stream in standardized matrix form and JACOBIAN generation I algorithm for homotopy continuation are suggested. Also DOF analysis is performed for easy-understanding of equation based simulation of complex column systems. The Algorithm is tested on several problems of interlinked separation processes and some of results are documented.

  • PDF

The Homotopy Perturbation Method for free vibration analysis of beam on elastic foundation

  • Ozturk, Baki;Coskun, Safa Bozkurt
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.415-425
    • /
    • 2011
  • In this study, the homotopy perturbation method (HPM) is applied to free vibration analysis of beam on elastic foundation. This numerical method is applied on three different axially loaded cases, namely: 1) one end fixed, the other end simply supported; 2) both ends fixed and 3) both ends simply supported cases. Analytical solutions and frequency factors are evaluated for different ratios of axial load N acting on the beam to Euler buckling load, $N_r$. The application of HPM for the particular problem in this study gives results which are in excellent agreement with both analytical solutions and the variational iteration method (VIM) solutions for all the cases considered in this study and the differential transform method (DTM) results available in the literature for the fixed-pinned case.

A STUDY ON SINGULAR INTEGRO-DIFFERENTIAL EQUATION OF ABEL'S TYPE BY ITERATIVE METHODS

  • Behzadi, Sh.S.;Abbasbandy, S.;Allahviranloo, T.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.499-511
    • /
    • 2013
  • In this article, Adomian decomposition method (ADM), variation iteration method(VIM) and homotopy analysis method (HAM) for solving integro-differential equation with singular kernel have been investigated. Also,we study the existence and uniqueness of solutions and the convergence of present methods. The accuracy of the proposed method are illustrated with solving some numerical examples.

ANALYTICAL SOLUTION OF COUPLED RADIATION-CONVECTION DISSIPATIVE NON-GRAY GAS FLOW IN A NON-DARCY POROUS MEDIUM

  • Darvishi, Mohammad Taghi;Khani, Farzad;Aziz, Abdul
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1203-1216
    • /
    • 2010
  • The homotopy analysis method (HAM) has been applied to develop an analytic solution for the coupled radiation-convection dissipative non-gray gas flow in a non-Darcy porous medium. Results are presented for the surface shear and temperature profiles are presented to illustrate the effect of various parameters appearing in the analytical formulation. The accuracy and convergence of the method is also discussed.

Nonlinear stability analysis of porous sandwich beam with nanocomposite face sheet on nonlinear viscoelastic foundation by using Homotopy perturbation method

  • Rostamia, Rasoul;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.821-829
    • /
    • 2021
  • Nonlinear dynamic response of a sandwich beam considering porous core and nano-composite face sheet on nonlinear viscoelastic foundation with temperature-variable material properties is investigated in this research. The Hamilton's principle and beam theory are used to drive the equations of motion. The nonlinear differential equations of sandwich beam respect to time are obtained to solve nonlinear differential equations by Homotopy perturbation method (HPM). The effects of various parameters such as linear and nonlinear damping coefficient, linear and nonlinear spring constant, shear constant of Pasternak type for elastic foundation, temperature variation, volume fraction of carbon nanotube, porosity distribution and porosity coefficient on nonlinear dynamic response of sandwich beam are presented. The results of this paper could be used to analysis of dynamic modeling for a flexible structure in many industries such as automobiles, Shipbuilding, aircrafts and spacecraft with solar easured at current time step and the velocity and displacement were estimated through linear integration.

Optimal extended homotopy analysis method for Multi-Degree-of-Freedom nonlinear dynamical systems and its application

  • Qian, Y.H.;Zhang, Y.F.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.105-116
    • /
    • 2017
  • In this paper, the optimal extended homotopy analysis method (OEHAM) is introduced to deal with the damped Duffing resonator driven by a van der Pol oscillator, which can be described as a complex Multi-Degree-of-Freedom (MDOF) nonlinear coupling system. Ecumenically, the exact solutions of the MDOF nonlinear coupling systems are difficult to be obtained, thus the development of analytical approximation becomes an effective and meaningful approach to analyze these systems. Compared with traditional perturbation methods, HAM is more valid and available, and has been widely used for nonlinear problems in recent years. Hence, the method will be chosen to study the system in this article. In order to acquire more suitable solutions, we put forward HAM to the OEHAM. For the sake of verifying the accuracy of the above method, a series of comparisons are introduced between the results received by the OEHAM and the numerical integration method. The results in this article demonstrate that the OEHAM is an effective and robust technique for MDOF nonlinear coupling systems. Besides, the presented methods can also be broadly used for various strongly nonlinear MDOF dynamical systems.