• Title/Summary/Keyword: homogeneous structures

Search Result 318, Processing Time 0.025 seconds

Finite Element and Experimental Validation of SINTAP Defect Assessment Procedure for Welded Structure (수치해석과 실험에 의한 SINTAP 용접 구조물 균열 평가법의 검증)

  • 김윤재;김진수
    • Journal of Welding and Joining
    • /
    • v.22 no.1
    • /
    • pp.50-57
    • /
    • 2004
  • This paper provides FE and experimental validation of the defect assessment method for strength mismatched welded structures, resulting from the Brite Euram SINTAP (Structural Integrity Assessment Procedures for European Industry) project. This shows that the proposed method is conservative, and that the degree of conservatism is similar to that embedded in the methods for homogeneous structures. It provides confidence in the use of the proposed SINTAP method for assessing defective weld strength mismatched structures.

Auto-parametric resonance of framed structures under periodic excitations

  • Li, Yuchun;Gou, Hongliang;Zhang, Long;Chang, Chenyu
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.497-510
    • /
    • 2017
  • A framed structure may be composed of two sub-structures, which are linked by a hinged joint. One sub-structure is the primary system and the other is the secondary system. The primary system, which is subjected to the periodic external load, can give rise to an auto-parametric resonance of the second system. Considering the geometric-stiffness effect produced by the axially internal force, the element equation of motion is derived by the extended Hamilton's principle. The element equations are then assembled into the global non-homogeneous Mathieu-Hill equations. The Newmark's method is introduced to solve the time-history responses of the non-homogeneous Mathieu-Hill equations. The energy-growth exponent/coefficient (EGE/EGC) and a finite-time Lyapunov exponent (FLE) are proposed for determining the auto-parametric instability boundaries of the structural system. The auto-parametric instabilities are numerically analyzed for the two frames. The influence of relative stiffness between the primary and secondary systems on the auto-parametric instability boundaries is investigated. A phenomenon of the "auto-parametric internal resonance" (the auto-parametric resonance of the second system induced by a normal resonance of the primary system) is predicted through the two numerical examples. The risk of auto-parametric internal resonance is emphasized. An auto-parametric resonance experiment of a ${\Gamma}$-shaped frame is conducted for verifying the theoretical predictions and present calculation method.

Bandgap capability of hybrid Kirigami inspired cellular structures

  • Del Broccolo, S.;Ouisse, M.;Foltete, E.;Scarpa, F.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.6
    • /
    • pp.479-495
    • /
    • 2019
  • Periodic cellular core structures included in sandwich panels possess good stiffness while saving weight and only lately their potential to act as passive vibration filters is increasingly being studied. Classical homogeneous honeycombs show poor vibracoustic performance and only by varying certain geometrical features, a shift and/or variation in bandgap frequency range occurs. This work aims to investigate the vibration filtering properties of the AUXHEX "hybrid" core, which is a cellular structure containing cells of different shapes. Numerical simulations are carried out using two different approaches. The first technique used is the harmonic analysis with commercially available software, and the second one, which has been proved to be computationally more efficient, consists in the Wave Finite Element Method (WFEM), which still makes use of finite elements (FEM) packages, but instead of working with large models, it exploits the periodicity of the structure by analysing only the unit cell, thanks to the Floquet-Bloch theorem. Both techniques allow to produce graphs such as frequency response plots (FRF's) and dispersion curves, which are powerful tools used to identify the spectral bandgap signature of the considered structure. The hybrid cellular core pattern AUXHEX is analysed and results are discussed, focusing the investigation on the possible spectral bandgap signature heritage that a hybrid core experiences from their "parents" homogeneous cell cores.

Free vibration analysis of multi-directional porous functionally graded sandwich plates

  • Guermit Mohamed Bilal Chami;Amar Kahil;Lazreg Hadji;Royal Madan;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.263-277
    • /
    • 2023
  • Free vibration analysis of multi-directional porous functionally graded (FG) sandwich plate has been performed for two cases namely: FG skin with homogeneous core and FG core with homogeneous skin. Hamilton's principle was employed and the solution was obtained using Navier's technique. This theory imposes traction-free boundary conditions on the surfaces and does not require shear correction factors. The results obtained are validated with those available in the literature. The composition of metal-ceramic-based functionally graded material (FGM) changes in longitudinal and transverse directions according to the power law. Imperfections in the functionally graded material introduced during the fabrication process were modeled with different porosity laws such as evenly, unevenly distributed, and logarithmic uneven distributions. The effect of porosity laws and geometry parameters on the natural frequency was investigated. On comparing the natural frequency of two cases for perfect and imperfect sandwich plates a reverse trend in natural frequency result was seen. The finding shows a multidirectional functionally graded structures perform better compared to uni-directional gradation. Hence, critical grading parameters and imperfection types have been identified which will guide experimentalists and researchers in selecting fabrication routes for improving the performance of such structures.

ONE-HOMOGENEOUS WEIGHT CODES OVER FINITE CHAIN RINGS

  • SARI, MUSTAFA;SIAP, IRFAN;SIAP, VEDAT
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.2011-2023
    • /
    • 2015
  • This paper determines the structures of one-homogeneous weight codes over finite chain rings and studies the algebraic properties of these codes. We present explicit constructions of one-homogeneous weight codes over finite chain rings. By taking advantage of the distance-preserving Gray map defined in [7] from the finite chain ring to its residue field, we obtain a family of optimal one-Hamming weight codes over the residue field. Further, we propose a generalized method that also includes the examples of optimal codes obtained by Shi et al. in [17].

A Study on the Normalized Analysis of Sensitivity Optimization of Evanescent-Field, Integrated-Optic Biosensor based on Planar Optical Waveguide (평면 광도파로 기반의 소산파 집적광학 바이오센서의 감지도 최적화에 관한 정규화 해석에 관한 연구)

  • Jung, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.25-30
    • /
    • 2018
  • Closed-form analytical expressions and 3-dimensional normalized charts for the homogeneous sensing and surface sensing structures are derived to provide the conditions for the maximum sensitivity of integrated-optic biosensors based on evanescent-wave and stepindex planar optical waveguides. The analysis is made for transverse electric (TE) polarization mode, in both cases where the measurand is homogeneously distributed in the cover (namely, homogeneous sensing), and where it is an ultrathin film on the waveguide-cover interface (namely, surface sensing).

Computation of mixed-mode stress intensity factors in functionally graded materials by natural element method

  • Cho, J.R.
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.43-51
    • /
    • 2019
  • This paper is concerned with the numerical calculation of mixed-mode stress intensity factors (SIFs) of 2-D isotropic functionally graded materials (FGMs) by the natural element method (more exactly, Petrov-Galerkin NEM). The spatial variation of elastic modulus in non-homogeneous FGMs is reflected into the modified interaction integral ${\tilde{M}}^{(1,2)}$. The local NEM grid near the crack tip is refined, and the directly approximated strain and stress fields by PG-NEM are enhanced and smoothened by the patch recovery technique. Two numerical examples with the exponentially varying elastic modulus are taken to illustrate the proposed method. The mixed-mode SIFs are parametrically computed with respect to the exponent index in the elastic modulus and external loading and the crack angle and compared with the other reported results. It has been justified from the numerical results that the present method successfully and accurately calculates the mixed-mode stress intensity factors of 2-D non-homogeneous functionally graded materials.

Reduction of Quantum Noise using Adaptive Weighted Median filter in Medical Radio-Fluoroscoy Image (적응성 가중 메디안 필터를 이용한 의료용 X선 투시 영상의 양자잡음 제거)

  • Lee, Hoo-Min;Nam, Moon-Hyon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.10
    • /
    • pp.468-476
    • /
    • 2002
  • Digital images are easily corrupted by noise during the data transmission, data capture and data processing. A technical method of noise analyzing and adaptive filtering for reducing of quantum noise in medical radio-fluoroscopy images is presented. By adjusting the characteristics of the filter according to local statistics around each pixel of the image as moving windowing, it is possible to suppress noise sufficiently while preserve edge and other significant information required in diagnosis. We proposed adaptive weighed median(AWM) filters based on local statistics. We showed two ways of realizing the AWM filters. One is a simple type of AWM filter, which is constructed by Homogeneous factor(HF). Homogeneous factor(HF) from the noise models that enables the filter to recognize the local structures of the image is introduced, and an algorithm for determining the HF fitted to the diagnostic systems with various inner statistical properties is proposed. We show by the experimented that the performances of proposed method is superior to these of other filters and models in preserving small details and suppressing the noise at homogeneous region. The proposed algorithms were implemented by Visual C++ language on a IBM-PC Pentium 550 for testing purposes and the effects and results of the filter in the various levels of noise and images were proposed by comparing the values of NMSE(normalized mean square error) with the value of the other existing filtering methods.

Origin of Callus and Vascular Cambium in Debarked Stem of Robinia pseudoacacia

  • Soh, Woong-Young
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.317-323
    • /
    • 1994
  • The calluses formed on the surface of a quarter-girdled Robinia pseudoacacia stems have been shown to originate from immature xylem cells and preexisting cambial cells. The cellus is not only formed by periclinal and anticlinal divisions of radial cells, but also axial cells. In tangential view, the callus at initial stage showed heterogeneous structure composed of long and short cells and then homogeneous one with short cells. Some cells of homogeneous structure in middle region of callus at early stage is later elongated and others mainly divided in trasverse plane. In the result the homogeneous structure becomes into a heterogeneous one. Subsequently, the long cells in heterogeneous structures elongated further and became fusifrom initials, and the short cells divided transversely became ray initials. The appearence of homogeneous and heterogeneous structure in the callus on debarked stem without organ elongation is almost similar to that of the structure in the procambium of young stem which is elongating extensively. Eventually, the ontogeny of vascular cambium in wound callus resembles that of a young stem grown normally, although the debarked stem does not grow in length but in girth and the young stem elongates activity. These findings mean that the active intrusive growth of short procambial cells occurs during the differentiation of fusiform cambial cells.

  • PDF

Modelling of aluminium foam sandwich panels

  • D'Alessandro, Vincenzo;Petrone, Giuseppe;De Rosa, Sergio;Franco, Francesco
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.615-636
    • /
    • 2014
  • Aluminium Foam Sandwich (AFS) panels are becoming always more attractive in transportation applications thanks to the excellent combination of mechanical properties, high strength and stiffness, with functional ones, thermo-acoustic isolation and vibration damping. These properties strongly depend on the density of the foam, the morphology of the pores, the type (open or closed cells) and the size of the gas bubbles enclosed in the solid material. In this paper, the vibrational performances of two classes of sandwich panels with an Alulight(R) foam core are studied. Experimental tests, in terms of frequency response function and modal analysis, are performed in order to investigate the effect of different percentage of porosity in the foam, as well as the effect of the random distribution of the gas bubbles. Experimental results are used as a reference for developing numerical models using finite element approach. Firstly, a sensitivity analysis is performed in order to obtain a limit-but-bounded dynamic response, modelling the foam core as a homogeneous one. The experimental-numerical correlation is evaluated in terms of natural frequencies and mode shapes. Afterwards, an update of the previous numerical model is presented, in which the core is not longer modelled as homogeneous. Mass and stiffness are randomly distributed in the core volume, exploring the space of the eigenvectors.