Origin of Callus and Vascular Cambium in Debarked Stem of Robinia pseudoacacia

  • Published : 1994.09.01

Abstract

The calluses formed on the surface of a quarter-girdled Robinia pseudoacacia stems have been shown to originate from immature xylem cells and preexisting cambial cells. The cellus is not only formed by periclinal and anticlinal divisions of radial cells, but also axial cells. In tangential view, the callus at initial stage showed heterogeneous structure composed of long and short cells and then homogeneous one with short cells. Some cells of homogeneous structure in middle region of callus at early stage is later elongated and others mainly divided in trasverse plane. In the result the homogeneous structure becomes into a heterogeneous one. Subsequently, the long cells in heterogeneous structures elongated further and became fusifrom initials, and the short cells divided transversely became ray initials. The appearence of homogeneous and heterogeneous structure in the callus on debarked stem without organ elongation is almost similar to that of the structure in the procambium of young stem which is elongating extensively. Eventually, the ontogeny of vascular cambium in wound callus resembles that of a young stem grown normally, although the debarked stem does not grow in length but in girth and the young stem elongates activity. These findings mean that the active intrusive growth of short procambial cells occurs during the differentiation of fusiform cambial cells.

Keywords