• 제목/요약/키워드: homogeneous real hypersurface

검색결과 13건 처리시간 0.024초

REAL HYPERSURFACE OF A COMPLEX PROJECTIVE SPACE

  • Lee, O.;Shin, D.W.
    • 대한수학회지
    • /
    • 제36권4호
    • /
    • pp.725-736
    • /
    • 1999
  • In the present paper we will give a characterization of homogeneous real hypersurfaces of type A1, A2 and B of a complex projective space.

  • PDF

THE RIGIDITY FOR REAL HYPERSURFACES IN P3(ℂ)

  • LEE, SEONG-BAEK;KIM, NAM-GIL;HAN, SEUNG-GOOK;TAKAGI, RYOICHI
    • 호남수학학술지
    • /
    • 제22권1호
    • /
    • pp.99-106
    • /
    • 2000
  • We prove that a certain class of real hypersurfaces in $P_3({\mathbb{C}})$ has the rigidity. Making use of this we classify all homogeneous real hypersurfaces in $P_3({\mathbb{C}})$.

  • PDF

HOMOGENEOUS REAL HYPERSURFACES IN A COMPLEX HYPERBOLIC SPACE WITH FOUR CONSTANT PRINCIPAL CURVATURES

  • Song, Hyunjung
    • 충청수학회지
    • /
    • 제21권1호
    • /
    • pp.29-48
    • /
    • 2008
  • We deal with the classification problem of real hypersurfaces in a complex hyperbolic space. In order to classify real hypersurfaces in a complex hyperbolic space we characterize a real hypersurface M in $H_n(\mathbb{C})$ whose structure vector field is not principal. We also construct extrinsically homogeneous real hypersurfaces with four distinct curvatures and their structure vector fields are not principal.

  • PDF

Structure Jacobi Operators of Real Hypersurfaces with Constant Mean Curvature in a Complex Space Form

  • Hwang, Tae Yong;Ki, U-Hang;Kurihara, Hiroyuki
    • Kyungpook Mathematical Journal
    • /
    • 제56권4호
    • /
    • pp.1207-1235
    • /
    • 2016
  • Let M be a real hypersurface with constant mean curvature in a complex space form $M_n(c),c{\neq}0$. In this paper, we prove that if the structure Jacobi operator $R_{\xi}= R({\cdot},{\xi}){\xi}$ with respect to the structure vector field ${\xi}$ is ${\phi}{\nabla}_{\xi}{\xi}$-parallel and $R_{\xi}$ commute with the structure tensor field ${\phi}$, then M is a homogeneous real hypersurface of Type A.

THE JACOBI OPERATOR OF REAL HYPERSURFACES IN A COMPLEX SPACE FORM

  • Ki, U-Hang;Kim, He-Jin;Lee, An-Aye
    • 대한수학회논문집
    • /
    • 제13권3호
    • /
    • pp.545-560
    • /
    • 1998
  • Let ø and A be denoted by the structure tensor field of type (1,1) and by the shape operator of a real hypersurface in a complex space form $M_{n}$ (c), c $\neq$ 0 respectively. The main purpose of this paper is to prove that if a real hypersurface in $M_{n}$ (c) satisfies $R_{ξ}$ øA = $AøR_{ξ}$, then the structure vector field ξ is principal, where $R_{ξ}$ / is the Jacobi operator with respect to ξ.

  • PDF

CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A NONFLAT COMPLEX SPACE FORM WHOSE STRUCTURE JACOBI OPERATOR IS ξ-PARALLEL

  • Kim, Nam-Gil
    • 호남수학학술지
    • /
    • 제31권2호
    • /
    • pp.185-201
    • /
    • 2009
  • Let M be a real hypersurface with almost contact metric structure $({\phi},{\xi},{\eta},g)$ of a nonflat complex space form whose structure Jacobi operator $R_{\xi}=R({\cdot},{\xi}){\xi}$ is ${\xi}$-parallel. In this paper, we prove that the condition ${\nabla}_{\xi}R_{\xi}=0$ characterize the homogeneous real hypersurfaces of type A in a complex projective space $P_n{\mathbb{C}}$ or a complex hyperbolic space $H_n{\mathbb{C}}$ when $g({\nabla}_{\xi}{\xi},{\nabla}_{\xi}{\xi})$ is constant.

Jacobi Operators with Respect to the Reeb Vector Fields on Real Hypersurfaces in a Nonflat Complex Space Form

  • Ki, U-Hang;Kim, Soo Jin;Kurihara, Hiroyuki
    • Kyungpook Mathematical Journal
    • /
    • 제56권2호
    • /
    • pp.541-575
    • /
    • 2016
  • Let M be a real hypersurface of a complex space form with almost contact metric structure (${\phi}$, ${\xi}$, ${\eta}$, g). In this paper, we prove that if the structure Jacobi operator $R_{\xi}= R({\cdot},{\xi}){\xi}$ is ${\phi}{\nabla}_{\xi}{\xi}$-parallel and $R_{\xi}$ commute with the structure tensor ${\phi}$, then M is a homogeneous real hypersurface of Type A provided that $TrR_{\xi}$ is constant.

SEMI-INVARIANT MINIMAL SUBMANIFOLDS OF CONDIMENSION 3 IN A COMPLEX SPACE FORM

  • Lee, Seong-Cheol;Han, Seung-Gook;Ki, U-Hang
    • 대한수학회논문집
    • /
    • 제15권4호
    • /
    • pp.649-668
    • /
    • 2000
  • In this paper we prove the following : Let M be a real (2n-1)-dimensional compact minimal semi-invariant submanifold in a complex projective space P(sub)n+1C. If the scalar curvature $\geq$2(n-1)(2n+1), then m is a homogeneous type $A_1$ or $A_2$. Next suppose that the third fundamental form n satisfies dn = 2$\theta\omega$ for a certain scalar $\theta$$\neq$c/2 and $\theta$$\neq$c/4 (4n-1)/(2n-1), where $\omega$(X,Y) = g(X,øY) for any vectors X and Y on a semi-invariant submanifold of codimension 3 in a complex space form M(sub)n+1 (c). Then we prove that M has constant principal curvatures corresponding the shape operator in the direction of the distingusihed normal and the structure vector ξ is an eigenvector of A if and only if M is locally congruent to a homogeneous minimal real hypersurface of M(sub)n (c).

  • PDF