• Title/Summary/Keyword: homogeneous hypersurfaces

Search Result 20, Processing Time 0.024 seconds

HOMOGENEOUS REAL HYPERSURFACES IN A COMPLEX HYPERBOLIC SPACE WITH FOUR CONSTANT PRINCIPAL CURVATURES

  • Song, Hyunjung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.29-48
    • /
    • 2008
  • We deal with the classification problem of real hypersurfaces in a complex hyperbolic space. In order to classify real hypersurfaces in a complex hyperbolic space we characterize a real hypersurface M in $H_n(\mathbb{C})$ whose structure vector field is not principal. We also construct extrinsically homogeneous real hypersurfaces with four distinct curvatures and their structure vector fields are not principal.

  • PDF

THE RIGIDITY FOR REAL HYPERSURFACES IN P3(ℂ)

  • LEE, SEONG-BAEK;KIM, NAM-GIL;HAN, SEUNG-GOOK;TAKAGI, RYOICHI
    • Honam Mathematical Journal
    • /
    • v.22 no.1
    • /
    • pp.99-106
    • /
    • 2000
  • We prove that a certain class of real hypersurfaces in $P_3({\mathbb{C}})$ has the rigidity. Making use of this we classify all homogeneous real hypersurfaces in $P_3({\mathbb{C}})$.

  • PDF

HOPF HYPERSURFACES OF THE HOMOGENEOUS NEARLY KÄHLER 𝕊3 × 𝕊3 SATISFYING CERTAIN COMMUTING CONDITIONS

  • Xiaomin, Chen;Yifan, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1567-1594
    • /
    • 2022
  • In this article, we first introduce the notion of commuting Ricci tensor and pseudo-anti commuting Ricci tensor for Hopf hypersurfaces in the homogeneous nearly Kähler 𝕊3 × 𝕊3 and prove that the mean curvature of hypersurface is constant under certain assumptions. Next, we prove the nonexistence of Ricci soliton on Hopf hypersurface with potential Reeb vector field, which improves a result of Hu et al. on the nonexistence of Einstein Hopf hypersurfaces in the homogeneous nearly Kähler 𝕊3 × 𝕊3.

A NOTE ON COMPACT MÖBIUS HOMOGENEOUS SUBMANIFOLDS IN 𝕊n+1

  • Ji, Xiu;Li, TongZhu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.681-689
    • /
    • 2019
  • The $M{\ddot{o}}bius$ homogeneous submanifold in ${\mathbb{S}}^{n+1}$ is an orbit of a subgroup of the $M{\ddot{o}}bius$ transformation group of ${\mathbb{S}}^{n+1}$. In this note, We prove that a compact $M{\ddot{o}}bius$ homogeneous submanifold in ${\mathbb{S}}^{n+1}$ is the image of a $M{\ddot{o}}bius$ transformation of the isometric homogeneous submanifold in ${\mathbb{S}}^{n+1}$.

Characterizations of some real hypersurfaces in a complex space form in terms of lie derivative

  • Ki, U-Hang;Suh, Young-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.161-170
    • /
    • 1995
  • A complex $n(\geq 2)$-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_n(c)$. A complete and simply connected complex space form is a complex projective space $P_nC$, a complex Euclidean space $C^n$ or a complex hyperbolic space $H_nC$, according as c > 0, c = 0 or c < 0. Takagi [12] and Berndt [2] classified all homogeneous real hypersufaces of $P_nC$ and $H_nC$.

  • PDF

JACOBI OPERATORS ALONG THE STRUCTURE FLOW ON REAL HYPERSURFACES IN A NONFLAT COMPLEX SPACE FORM II

  • Ki, U-Hang;Kurihara, Hiroyuki
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1315-1327
    • /
    • 2011
  • Let M be a real hypersurface of a complex space form with almost contact metric structure (${\phi}$, ${\xi}$, ${\eta}$, g). In this paper, we study real hypersurfaces in a complex space form whose structure Jacobi operator $R_{\xi}=R({\cdot},\;{\xi}){\xi}$ is ${\xi}$-parallel. In particular, we prove that the condition ${\nabla}_{\xi}R_{\xi}=0$ characterizes the homogeneous real hypersurfaces of type A in a complex projective space or a complex hyperbolic space when $R_{\xi}{\phi}S=R_{\xi}S{\phi}$ holds on M, where S denotes the Ricci tensor of type (1,1) on M.

CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A COMPLEX SPACE FORM USED BY THE ζ-PARALLEL STRUCTURE JACOBI OPERATOR

  • Kim, Nam-Gil;Ki, U-Hang;Kurihara, Hiroyuki
    • Honam Mathematical Journal
    • /
    • v.30 no.3
    • /
    • pp.535-550
    • /
    • 2008
  • Let M be a real hypersurface of a complex space form with almost contact metric structure $({\phi},{\xi},{\eta},g)$. In this paper, we study real hypersurfaces in a complex space form whose structure Jacobi operator $R_{\xi}=R({\cdot},{\xi}){\xi}$ is ${\xi}$-parallel. In particular, we prove that the condition ${\nabla}_{\xi}R_{\xi}=0$ characterize the homogeneous real hypersurfaces of type A in a complex: projective space $P_n{\mathbb{C}}$ or a complex hyperbolic space $H_n{\mathbb{C}}$ when $g({\nabla}_{\xi}{\xi},{\nabla}_{\xi}{\xi})$ is constant and not equal to -c/24 on M, where c is a constant holomorphic sectional curvature of a complex space form.