Acknowledgement
This research was supported by Science Foundation of China University of Petroleum-Beijing (Nos. 2462020XKJS02, 2462020YXZZ004). The first author expresses thanks to China Scholarship Council for supporting him to visit University of Turin and expresses his gratitude to Professor Luigi Vezzoni and Department of Mathematics for their hospitality. The authors also would like to thank the referee for the valuable comments on this paper.
References
- M. Antic, N. Djurdjevic, M. Moruz, and L. Vrancken, Three-dimensional CR submanifolds of the nearly Kahler 𝕊3×𝕊3, Ann. Mat. Pura Appl. (4) 198 (2019), no. 1, 227-242. https://doi.org/10.1007/s10231-018-0770-8
- B. Bekta,s, M. Moruz, J. Van der Veken, and L. Vrancken, Lagrangian submanifolds with constant angle functions of the nearly Kahler 𝕊3×𝕊3, J. Geom. Phys. 127 (2018), 1-13. https://doi.org/10.1016/j.geomphys.2018.01.011
- B. Bekta,s, M. Moruz, J. Van der Veken, and L. Vrancken, Lagrangian submanifolds of the nearly Kahler 𝕊3×𝕊3 from minimal surfaces in 𝕊3, Proc. Roy. Soc. Edinburgh Sect. A 149 (2019), no. 3, 655-689. https://doi.org/10.1017/prm.2018.43
- J. Berndt and Y. J. Suh, Real hypersurfaces with isometric Reeb flow in complex twoplane Grassmannians, Monatsh. Math. 137 (2002), no. 2, 87-98. https://doi.org/10.1007/s00605-001-0494-4
- J. Berndt and Y. J. Suh, Real hypersurfaces with isometric Reeb flow in complex quadrics, Internat. J. Math. 24 (2013), no. 7, 1350050, 18 pp. https://doi.org/10.1142/S0129167X1350050X
- J.-B. Butruille, Homogeneous nearly Kahler manifolds, in Handbook of pseudo-Riemannian geometry and supersymmetry, 399-423, IRMA Lect. Math. Theor. Phys., 16, Eur. Math. Soc., Zurich, 2010. https://doi.org/10.4171/079-1/11
- J. Bolton, F. Dillen, B. Dioos, and L. Vrancken, Almost complex surfaces in the nearly Kahler 𝕊3×𝕊3, Tohoku Math. J. (2) 67 (2015), no. 1, 1-17. https://doi.org/10.2748/tmj/1429549576
- J. T. Cho, Notes on contact Ricci solitons, Proc. Edinb. Math. Soc. (2) 54 (2011), no. 1, 47-53. https://doi.org/10.1017/S0013091509000571
- B. Dioos, L. Vrancken, and X. Wang, Lagrangian submanifolds in the homogeneous nearly Kahler 𝕊3×𝕊3, Ann. Global Anal. Geom. 53 (2018), no. 1, 39-66. https://doi.org/10.1007/s10455-017-9567-z
- M. Djoric, M. Djoric, and M. Moruz, Real hypersurfaces of the homogeneous nearly Kahler 𝕊3×𝕊3 with P-isotropic normal, J. Geom. Phys. 160 (2021), Paper No. 103945, 13 pp. https://doi.org/10.1016/j.geomphys.2020.103945
- L. Foscolo and M. Haskins, New G2-holonomy cones and exotic nearly Kahler structures on 𝕊6 and 𝕊3×𝕊3, Ann. of Math. (2) 185 (2017), no. 1, 59-130. https://doi.org/10.4007/annals.2017.185.1.2
- Z. Hu, M. Moruz, L. Vrancken, and Z. Yao, On the nonexistence and rigidity for hypersurfaces of the homogeneous nearly Kahler 𝕊3×𝕊3, Differential Geom. Appl. 75 (2021), Paper No. 101717, 22 pp. https://doi.org/10.1016/j.difgeo.2021.101717
- Z. Hu and Z. Yao, On Hopf hypersurfaces of the homogeneous nearly Kahler 𝕊3×𝕊3, Ann. Mat. Pura Appl. (4) 199 (2020), no. 3, 1147-1170. https://doi.org/10.1007/s10231-019-00915-z
- Z. Hu, Z. Yao, and X. Zhang, Hypersurfaces of the homogeneous nearly Kahler 𝕊6 and 𝕊3×𝕊3 with anticommutative structure tensors, Bull. Belg. Math. Soc. Simon Stevin 26 (2019), no. 4, 535-549. https://doi.org/10.36045/bbms/1576206356
- Z. Hu, Z. Yao, and Y. Zhang, On some hypersurfaces of the homogeneous nearly Kahler 𝕊3×𝕊3, Math. Nachr. 291 (2018), no. 2-3, 343-373. https://doi.org/10.1002/mana.201600398
- Z. Hu and Y. Zhang, Rigidity of the almost complex surfaces in the nearly Kahler 𝕊3×𝕊3, J. Geom. Phys. 100 (2016), 80-91. https://doi.org/10.1016/j.geomphys.2015.10.008
- Z. Hu and Y. Zhang, Isotropic Lagrangian submanifolds in the homogeneous nearly Kahler 𝕊3×𝕊3, Sci. China Math. 60 (2017), no. 4, 671-684. https://doi.org/10.1007/s11425-016-0288-0
- I. Jeong and Y. J. Suh, Pseudo anti-commuting and Ricci soliton real hypersurfaces in complex two-plane Grassmannians, J. Geom. Phys. 86 (2014), 258-272. https://doi.org/10.1016/j.geomphys.2014.08.011
- P.-A. Nagy, Nearly Kahler geometry and Riemannian foliations, Asian J. Math. 6 (2002), no. 3, 481-504. https://doi.org/10.4310/AJM.2002.v6.n3.a5
- Y. J. Suh, Real hypersurfaces of type B in complex two-plane Grassmannians, Monatsh. Math. 147 (2006), no. 4, 337-355. https://doi.org/10.1007/s00605-005-0329-9
- Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with commuting Ricci tensor, J. Geom. Phys. 60 (2010), no. 11, 1792-1805. https://doi.org/10.1016/j.geomphys.2010.06.007
- Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with ξ-invariant Ricci tensor, J. Geom. Phys. 61 (2011), no. 4, 808-814. https://doi.org/10.1016/j.geomphys.2010.12.010
- Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), no. 6, 1309-1324. https://doi.org/10.1017/S0308210510001472
- Y. J. Suh, Real hypersurfaces in the complex quadric with commuting and parallel Ricci tensor, J. Geom. Phys. 106 (2016), 130-142. https://doi.org/10.1016/j.geomphys.2016.03.001
- Y. J. Suh, Pseudo-anti commuting Ricci tensor and Ricci soliton real hypersurfaces in the complex quadric, J. Math. Pures Appl. (9) 107 (2017), no. 4, 429-450. https://doi.org/10.1016/j.matpur.2016.07.005