• Title/Summary/Keyword: homoclinic solution

Search Result 4, Processing Time 0.017 seconds

HOMOCLINIC ORBITS IN TRANSITIONAL PLANE COUETTE FLOW

  • Lustro, Julius Rhoan T.;Kawahara, Genta;van Veen, Lennaert;Shimizu, Masaki
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.58-62
    • /
    • 2015
  • Recent studies on wall-bounded shear flow have emphasized the significance of the stable manifold of simple nonlinear invariant solutions to the Navier-Stokes equation in the formation of the boundary between the laminar and turbulent regions in state space. In this paper we present newly discovered homoclinic orbits of the Kawahara and Kida(2001) periodic solution in plane Couette flow. We show that as the Reynolds number decreases a pair of homoclinic orbits move closer to each other until they disappear to exhibit homoclinic tangency.

STUDIES ON BOUNDARY VALUE PROBLEMS FOR BILATERAL DIFFERENCE SYSTEMS WITH ONE-DIMENSIONAL LAPLACIANS

  • YANG, XIAOHUI;LIU, YUJI
    • Korean Journal of Mathematics
    • /
    • v.23 no.4
    • /
    • pp.665-732
    • /
    • 2015
  • Existence results for multiple positive solutions of two classes of boundary value problems for bilateral difference systems are established by using a fixed point theorem under convenient assumptions. It is the purpose of this paper to show that the approach to get positive solutions of boundary value problems of finite difference equations by using multi-fixed-point theorems can be extended to treat the bilateral difference systems with one-dimensional Laplacians. As an application, the sufficient conditions are established for finding multiple positive homoclinic solutions of a bilateral difference system. The methods used in this paper may be useful for numerical simulation. An example is presented to illustrate the main theorems. Further studies are proposed at the end of the paper.

Noise Effect in a Nonlinear System Under Harmonic Excitation (불규칙한 외부 교란이 주기적 가진을 받는 비선형계의 동적 특성에 미치는 영향)

  • 박시형;김지환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.145-153
    • /
    • 1997
  • Dynamic characteristics are investigated when a nonlinear system showing periodic and chaotic responses under harmonic excitation is exposed to random perturbation. About two well potential problem, probability of homoclinic bifurcation is estimated using stochastic generalized Meinikov process and quantitive characteristics are investigated by calculation of Lyapunov exponent. Critical excitaion is calculated by various assumptions about Gaussian Melnikov process. To verify the phenomenon graphically Fokker-Planck equation is solved numerically and the original nonlinear equation is numerically simulated. Numerical solution of Fokker-Planck equation is calculated on Poincare section and noise induced chaos is studied by solving the eigenvalue problem of discretized probability density function.

  • PDF