• Title/Summary/Keyword: histogram modeling

Search Result 39, Processing Time 0.024 seconds

A Study on Prevention of Construction Opening Fall Accidents Introducing Image Processing (이미지 프로세싱을 활용한 개구부 추락 사고예방에 관한 연구)

  • Hong, Sung-Moon;Kim, Buyng-Chun;Kwon, Tae-Whan;Kim, Ju-Hyung;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.6 no.2
    • /
    • pp.39-46
    • /
    • 2016
  • While institutional matters such as improvement on Basic Guidelines for Construction Safety are greatly concerned to reduce falling accidents at construction sites, there are short of studies on how to practically predict accident signs at construction sites and to preemptively prevent them. As one of existing accident prevention methods, it was attempted to build the early warning system based on standardized accident scenarios to control the situations. However, the investment cost was too high depending on the site situation, and it did not help construction workers directly since it was developed to mainly provide support operational work support to safety managers. In the long run, it would be possible to develop the augmented reality based accident prevention method from the worker perspective by extracting product information from BIM, visually rendering it along with site installation materials term and comparing it with the site situation. However, to make this method effective, the BIM model should be implemented first and the technology that can promptly process site situations should be introduced. Accordingly, it is necessary to identify risk signs through lightweight image processing to promptly respond only with currently available resources. In this study, it was intended to propose the system concept that identified potential risk factors of falling accidents by histogram equalization, which was known as the fastest image processing method presently, used visual words, which could enhance model classification by wording image records, to determine the risk factors and notified them to the work manager.

Video-based Intelligent Unmanned Fire Surveillance System (영상기반 지능형 무인 화재감시 시스템)

  • Jeon, Hyoung-Seok;Yeom, Dong-Hae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.516-521
    • /
    • 2010
  • In this paper, we propose a video-based intelligent unmanned fire surveillance system using fuzzy color models. In general, to detect heat or smoke, a separate device is required for a fire surveillance system, this system, however, can be implemented by using widely used CCTV, which does not need separate devices and extra cost. The systems called video-based fire surveillance systems use mainly a method extracting smoke or flame from an input image only. The smoke is difficult to extract at night because of its gray-scale color, and the flame color depends on the temperature, the inflammable, the size of flame, etc, which makes it hard to extract the flame region from the input image. This paper deals with a intelligent fire surveillance system which is robust against the variation of the flame color, especially at night. The proposed system extracts the moving object from the input image, makes a decision whether the object is the flame or not by means of the color obtained by fuzzy color model and the shape obtained by histogram, and issues a fire alarm when the flame is spread. Finally, we verify the efficiency of the proposed system through the experiment of the controlled real fire.

Depth-Based Recognition System for Continuous Human Action Using Motion History Image and Histogram of Oriented Gradient with Spotter Model (모션 히스토리 영상 및 기울기 방향성 히스토그램과 적출 모델을 사용한 깊이 정보 기반의 연속적인 사람 행동 인식 시스템)

  • Eum, Hyukmin;Lee, Heejin;Yoon, Changyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.471-476
    • /
    • 2016
  • In this paper, recognition system for continuous human action is explained by using motion history image and histogram of oriented gradient with spotter model based on depth information, and the spotter model which performs action spotting is proposed to improve recognition performance in the recognition system. The steps of this system are composed of pre-processing, human action and spotter modeling and continuous human action recognition. In pre-processing process, Depth-MHI-HOG is used to extract space-time template-based features after image segmentation, and human action and spotter modeling generates sequence by using the extracted feature. Human action models which are appropriate for each of defined action and a proposed spotter model are created by using these generated sequences and the hidden markov model. Continuous human action recognition performs action spotting to segment meaningful action and meaningless action by the spotter model in continuous action sequence, and continuously recognizes human action comparing probability values of model for meaningful action sequence. Experimental results demonstrate that the proposed model efficiently improves recognition performance in continuous action recognition system.

Automation of Building Extraction and Modeling Using Airborne LiDAR Data (항공 라이다 데이터를 이용한 건물 모델링의 자동화)

  • Lim, Sae-Bom;Kim, Jung-Hyun;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.619-628
    • /
    • 2009
  • LiDAR has capability of rapid data acquisition and provides useful information for reconstructing surface of the Earth. However, Extracting information from LiDAR data is not easy task because LiDAR data consist of irregularly distributed point clouds of 3D coordinates and lack of semantic and visual information. This thesis proposed methods for automatic extraction of buildings and 3D detail modeling using airborne LiDAR data. As for preprocessing, noise and unnecessary data were removed by iterative surface fitting and then classification of ground and non-ground data was performed by analyzing histogram. Footprints of the buildings were extracted by tracing points on the building boundaries. The refined footprints were obtained by regularization based on the building hypothesis. The accuracy of building footprints were evaluated by comparing with 1:1,000 digital vector maps. The horizontal RMSE was 0.56m for test areas. Finally, a method of 3D modeling of roof superstructure was developed. Statistical and geometric information of the LiDAR data on building roof were analyzed to segment data and to determine roof shape. The superstructures on the roof were modeled by 3D analytical functions that were derived by least square method. The accuracy of the 3D modeling was estimated using simulation data. The RMSEs were 0.91m, 1.43m, 1.85m and 1.97m for flat, sloped, arch and dome shapes, respectively. The methods developed in study show that the automation of 3D building modeling process was effectively performed.

A Study on Geostatistical Simulation Technique for the Uncertainty Modeling of RMR (RMR의 불확실성 모델링을 위한 지구통계학적 시뮬레이션 기법에 관한 연구)

  • 류동우;김택곤;허종석
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.87-99
    • /
    • 2003
  • Geostatistics is defined as the theory of modeling of regionalized variables and is an efficient and elegant methodology for estimation and uncertainty evaluation from limited spatial sample data. In this study, we have made a theoretical comparison between kriging estimation and geostatistical simulation methods. Kriging methods do not preserve the histogram of original data nor their spatial structure, and also provide only an incomplete measure of uncertainty when compared to the simulation methods. A practical procedure of geostatistical simulation is suggested in this study and the technique is demonstrated through an application, in which it was used to identify the spatial distribution of RMR as well as to evaluate the spatial uncertainty. It is concluded that the geostatistical simulation is the appropriate method to quantify the spatial uncertainty of geotechnical variables such as RMA. Therefore, the results from the simulation can be used as useful information for designer's considerations in decision-making under various geological conditions as well as the related terms of contract.

Analysis of the Degree of Fatigue Damage in Truss Railway Bridge by Actual Stress and Simulation (실측응력 및 시뮬레이션에 의한 트러스 철도교의 피로피해도 분석)

  • Jung, Young-Hwa;Kim, Ik-Gyeom;Kim, Ji-Hun;Kim, eun-sung
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.149-158
    • /
    • 2000
  • After measuring actual stress by two measurements(Dynamic Strain Meter, Histogram Recorder) on truss rail road bridge, we could perform time history analysis by 3-D beam element method on modelling bridge. And then, after analyzing bridge structure in static by 3-D modelling, we estimated degree of fatigue damage in main member, secondary member of tie zone, cutting area of base metal cross section for confirming the result. In case that the simulated stress is carried out on modeling bridge, most of those simulation mainly is performed by main members. But in real bridge fatigue damage problems generally caused by junctions, connections, joints in which especially local stress is activated. Therefore, in this paper actual stress on critical area was estimated through the analysis result by simulation. With this study, we can estimate the degree of fatigue damage from a safety point of view and comparative accuracy.

  • PDF

Multiple-Shot Person Re-identification by Features Learned from Third-party Image Sets

  • Zhao, Yanna;Wang, Lei;Zhao, Xu;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.775-792
    • /
    • 2015
  • Person re-identification is an important and challenging task in computer vision with numerous real world applications. Despite significant progress has been made in the past few years, person re-identification remains an unsolved problem. This paper presents a novel appearance-based approach to person re-identification. The approach exploits region covariance matrix and color histograms to capture the statistical properties and chromatic information of each object. Robustness against low resolution, viewpoint changes and pose variations is achieved by a novel signature, that is, the combination of Log Covariance Matrix feature and HSV histogram (LCMH). In order to further improve re-identification performance, third-party image sets are utilized as a common reference to sufficiently represent any image set with the same type. Distinctive and reliable features for a given image set are extracted through decision boundary between the specific set and a third-party image set supervised by max-margin criteria. This method enables the usage of an existing dataset to represent new image data without time-consuming data collection and annotation. Comparisons with state-of-the-art methods carried out on benchmark datasets demonstrate promising performance of our method.

Numerical visualization of mixing in a circular chamber by two opposite impinging jets (반대방향 충돌제트에 의한 원형 챔버 내 혼합거동에 대한 전산가시화)

  • Karbasian, Hamidreza;Kim, Youngwoo;Lee, In Bum;Han, Beom Jeong;Jeong, Yong Chai;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.3
    • /
    • pp.32-37
    • /
    • 2016
  • In this study, the mixing process of two distinct flow is numerically investigated. Two flow with different physical properties (resin and hardener) are mixed through the opposing mixing jets. At a high pressure mixing process, the high speed flow is provided by two in-line nozzles. In the case of numerical modeling, Reynolds-Averaged Navier-Stokes Equations (RANS) is conducted to model the flow pattern inside the chamber. Additionally, SST k-omega turbulence model is selected to predict the kinetic energy of flow in impingement zone. The results show that mixing of two distinct flows would be efficient if the velocity of jet is high enough and nozzle diameter is a predominant parameter. Also, this velocity would create higher shear stress between two distinct flows which increases the mixing quality as well as strength of formed vortices. Eventually, the histogram of concentration fraction of resin is examined in order to show the quality of mixing and the range of concentration fractions in the output of chamber.

A Shadow Region Suppression Method using Intensity Projection and Converting Energy to Improve the Performance of Probabilistic Background Subtraction (확률기반 배경제거 기법의 향상을 위한 밝기 사영 및 변환에너지 기반 그림자 영역 제거 방법)

  • Hwang, Soon-Min;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.69-76
    • /
    • 2010
  • The segmentation of moving object in video sequence is a core technique of intelligent image processing system such as video surveillance, traffic monitoring and human tracking. A typical method to segment a moving region from the background is the background subtraction. The steps of background subtraction involve calculating a reference image, subtracting new frame from reference image and then thresholding the subtracted result. One of famous background modeling is Gaussian mixture model (GMM). Even though the method is known efficient and exact, GMM suffers from a problem that includes false pixels in ROI (region of interest), specifically shadow pixels. These false pixels cause fail of the post-processing tasks such as tracking and object recognition. This paper presents a method for removing false pixels included in ROT. First, we subdivide a ROI by using shape characteristics of detected objects. Then, a method is proposed to classify pixels from using histogram characteristic and comparing difference of energy that converts the color value of pixel into grayscale value, in order to estimate whether the pixels belong to moving object area or shadow area. The method is applied to real video sequence and the performance is verified.

Overlap Estimation for Panoramic Image Generation (중첩 영역 추정을 통한 파노라마 영상 생성)

  • Yang, Jihee;Jeon, Jihye;Park, Gooman
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.32-37
    • /
    • 2014
  • The panorama is a good alternative to overcome narrow FOV under study in robot vision, stereo camera and panorama image registration and modeling. The panorama can materialize view with angles wider than human view and provide realistic space which make feeling of being on the scene based on realism. If we use all correspondence, it is too difficult to find strong features and correspondences and assume accurate homography matrix in geographic changes in images as load of calculation increases. Accordingly, we used SURF algorithm to estimate overlapping areas with high similarity by comparing and analyzing the input images' histograms and to detect features. And we solved the problem of input order so we can make panorama by input images without order.