• Title/Summary/Keyword: higher-order models

Search Result 618, Processing Time 0.024 seconds

Developing Higher-Order Continuum Models for Describing Traffic Flow Behavior at Lane Drops Using Momentum Equation (Momentum Equation을 이용한 차로감소구간 교통류의 Higher-Order Continuum 모형 개발)

  • 손영태;양충헌;박우신
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.2
    • /
    • pp.93-104
    • /
    • 2002
  • The purpose of this study was to develop a improved high-order continuum model among macroscopic traffic flow models. This study was mainly performed for uninterrupted flow. In the first step, the proposed model described traffic flow at dropped lane. (no exits) It was possible to describe the traffic flow during short-term considering lane change. The proposed model was based on Payne's model. Our model was newly applied to uninterrupted traffic flow in consideration of geometry condition and driver behavior. It is possible to establish efficient control strategies, simulation and assess the effects of geometric improvements using this model. This model was simulated with field data for the actual adaption. The results of the model tests, traffic volume and density is suitably represented. we think that the results in the article can be led to predicting the situation in the near future.

The Analysis of the Educational Objectives, Scientific Models and Cognitive Processes in Scientific Inquiry of the SNU Scientifically Gifted Student Program (서울대학교 과학 영재 프로그램의 학습 목표, 과학적 모형, 과학탐구의 인지 과정 분석)

  • Shin My-Young;Chun Miran;Choe Seung-Urn
    • Journal of the Korean earth science society
    • /
    • v.26 no.5
    • /
    • pp.387-394
    • /
    • 2005
  • We have analyzed the science-gifted educational program (year 2002) at the Seoul National University in terms of its educational objectives, scientific models, and cognitive processes in scientific inquiry in order to provide insights into developing and improving science-gifted educational program. We assumed the following items as important factors for teaching scientifically gifted students: higher-order thinking skills involving synthesis domain in the educational objectives, highly abstract nature and complexity in the scientific models, cognitive processes of planning experiments in the cognitive processes in scientific inquiry. According to the analyzed results, the program has the following characteristics: (1) the rates of both higher and lower-order thinking skill domain in the educational objectives are similarly high, but the rate of synthesis domain is relatively low; (2) in the case of the scientific models, the rate of the multiple concepts and/or processes model is relatively low, while the level of the abstractness is relatively on average (3) cognitive processes of authentic scientific inquiry is not thoroughly reflected in the scientific inquiry activities, and very few cognitive processes of planning experiments factor is reflected. Therefore, we conclude in the synthesis domain in the educational objectives, multiple concepts and/or processes model, and cognitive processes of planning experiments should be especially reflected more on the science-gifted educational program in order to serve the needs of scientifically gifted students.

A Study on Gesture Recognition using Improved Higher Order Local Correlation Features and HMM (개선된 고차상관 특징계수와 은닉마르코프 모델을 이용한 제스처 인식에 관한 연구)

  • Kim, Jong-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.521-524
    • /
    • 2013
  • In this paper, the algorithm that recognizes the gesture by configuring the feature information obtained through Improved Higher Order Local Correlation Features as low dimensional gesture symbol was described. Since the proposed method doesn't require a lot of computations compared to the existing geometric feature based method or appearance based methods and it can maintain high recognition rate by using the minimum information, it is very well suited for real-time system establishment.

  • PDF

Determination of Optimal Mean Value and Screening Limit for a Production Process with Logistic Function (로지스틱 함수를 갖는 생산공정에 대한 최적공정평균 및 스크리닝 한계선의 결정)

  • Hong, Sung Hoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.3
    • /
    • pp.239-246
    • /
    • 2003
  • Individual items are produced continuously from an industrial process. Each item is checked to determine whether it satisfies a lower screening limit for the quality characteristic which is the weight of an expensive ingredient. If it does, it is sold at a regular price; if it does not, it is reprocessed or sold at a reduced price. The process mean may be adjusted to a higher value in order to reduce the proportion of the nonconforming items. Using a higher process mean, however, may result in a higher production cost. In this paper, the optimal process mean and lower screening limit are determined in situations where the probability that an item functions well is given by a logistic function of the quality characteristic. Profit models are constructed which involve four price/cost components; selling prices, cost from an accepted nonconforming item, and reprocessing and inspection costs. Methods of finding the optimal process mean and lower screening limit are presented and numerical examples are given.

Static and stress analyses of bi-directional FG porous plate using unified higher order kinematics theories

  • Mohamed, Salwa;Assie, Amr E.;Mohamed, Nazira;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.305-330
    • /
    • 2022
  • This article aims to investigate the static deflection and stress analysis of bi-directional functionally graded porous plate (BDFGPP) modeled by unified higher order kinematic theories to include the shear stress effects, which not be considered before. Different shear functions are described according to higher order models that satisfy the zero-shear influence at the top and bottom surfaces, and hence refrain from the need of shear correction factor. The material properties are graded through two spatial directions (i.e., thickness and length directions) according to the power law distribution. The porosities and voids inside the material constituent are described by different cosine functions. Hamilton's principle is implemented to derive the governing equilibrium equation of bi-directional FG porous plate structures. An efficient numerical differential integral quadrature method (DIQM) is exploited to solve the coupled variable coefficients partial differential equations of equilibrium. Problem validation and verification have been proven with previous prestigious work. Numerical results are illustrated to present the significant impacts of kinematic shear relations, gradation indices through thickness and length, porosity type, and boundary conditions on the static deflection and stress distribution of BDFGP plate. The proposed model is efficient in design and analysis of many applications used in nuclear, mechanical, aerospace, naval, dental, and medical fields.

The effect of transverse shear deformation on the post-buckling behavior of functionally graded beams

  • Meksi, Ali;Youzera, Hadj;Sadoun, Mohamed;Abbache, Ali;Meftah, Sid Ahmed;Tounsi, Abdelouahed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.81-89
    • /
    • 2022
  • The purposes of the present work it to study the effect of shear deformation on the static post-buckling response of simply supported functionally graded (FGM) axisymmetric beams based on classical, first-order, and higher-order shear deformation theories. The behavior of postbuckling is introduced based on geometric nonlinearity. The material properties of functionally graded materials (FGM) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The equations of motion and the boundary conditions derived using Hamilton's principle. This article compares and addresses the efficiency, the applicability, and the limits of classical models, higher order models (CLT, FSDT, and HSDT) for the static post-buckling response of an asymmetrically simply supported FGM beam. The amplitude of the static post-buckling obtained a solving the nonlinear governing equations. The results showing the variation of the maximum post-buckling amplitude with the applied axial load presented, for different theory and different parameters of material and geometry. In conclusion: The shear effect found to have a significant contribution to the post-buckling behaviors of axisymmetric beams. As well as the classical beam theory CBT, underestimate the shear effect compared to higher order shear deformation theories HSDT.

A Numerical Study of Shock Wave/Boundary Layer Interaction in a Supersonic Compressor Cascade

  • Song, Dong-Joo;Hwang, Hyun-Chul;Kim, Young-In
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.366-373
    • /
    • 2001
  • A numerical analysis of shock wave/boundary layer interaction in transonic/supersonic axial flow compressor cascade has been performed by using a characteristics upwind Navier-Stokes method with various turbulence models. Two equation turbulence models were applied to transonic/supersonic flows over a NACA 0012 airfoil. The results are superion to those from an algebraic turbulence model. High order TVD schemes predicted shock wave/boundary layer interactions reasonably well. However, the prediction of SWBLI depends more on turbulence models than high order schemes. In a supersonic axial flow cascade at M=1.59 and exit/inlet static pressure ratio of 2.21, k-$\omega$ and Shear Stress Transport (SST) models were numerically stables. However, the k-$\omega$ model predicted thicker shock waves in the flow passage. Losses due to shock/shock and shock/boundary layer interactions in transonic/supersonic compressor flowfields can be higher losses than viscous losses due to flow separation and viscous dissipation.

  • PDF

Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models

  • Ozcan, Giyasettin;Kocak, Yilmaz;Gulbandilar, Eyyup
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.275-282
    • /
    • 2017
  • The aim of this study is to build Machine Learning models to evaluate the effect of blast furnace slag (BFS) and waste tire rubber powder (WTRP) on the compressive strength of cement mortars. In order to develop these models, 12 different mixes with 288 specimens of the 2, 7, 28, and 90 days compressive strength experimental results of cement mortars containing BFS, WTRP and BFS+WTRP were used in training and testing by Random Forest, Ada Boost, SVM and Bayes classifier machine learning models, which implement standard cement tests. The machine learning models were trained with 288 data that acquired from experimental results. The models had four input parameters that cover the amount of Portland cement, BFS, WTRP and sample ages. Furthermore, it had one output parameter which is compressive strength of cement mortars. Experimental observations from compressive strength tests were compared with predictions of machine learning methods. In order to do predictive experimentation, we exploit R programming language and corresponding packages. During experimentation on the dataset, Random Forest, Ada Boost and SVM models have produced notable good outputs with higher coefficients of determination of R2, RMS and MAPE. Among the machine learning algorithms, Ada Boost presented the best R2, RMS and MAPE values, which are 0.9831, 5.2425 and 0.1105, respectively. As a result, in the model, the testing results indicated that experimental data can be estimated to a notable close extent by the model.

Random Regression Models Are Suitable to Substitute the Traditional 305-Day Lactation Model in Genetic Evaluations of Holstein Cattle in Brazil

  • Padilha, Alessandro Haiduck;Cobuci, Jaime Araujo;Costa, Claudio Napolis;Neto, Jose Braccini
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.6
    • /
    • pp.759-767
    • /
    • 2016
  • The aim of this study was to compare two random regression models (RRM) fitted by fourth ($RRM_4$) and fifth-order Legendre polynomials ($RRM_5$) with a lactation model (LM) for evaluating Holstein cattle in Brazil. Two datasets with the same animals were prepared for this study. To apply test-day RRM and LMs, 262,426 test day records and 30,228 lactation records covering 305 days were prepared, respectively. The lowest values of Akaike's information criterion, Bayesian information criterion, and estimates of the maximum of the likelihood function (-2LogL) were for $RRM_4$. Heritability for 305-day milk yield (305MY) was 0.23 ($RRM_4$), 0.24 ($RRM_5$), and 0.21 (LM). Heritability, additive genetic and permanent environmental variances of test days on days in milk was from 0.16 to 0.27, from 3.76 to 6.88 and from 11.12 to 20.21, respectively. Additive genetic correlations between test days ranged from 0.20 to 0.99. Permanent environmental correlations between test days were between 0.07 and 0.99. Standard deviations of average estimated breeding values (EBVs) for 305MY from $RRM_4$ and $RRM_5$ were from 11% to 30% higher for bulls and around 28% higher for cows than that in LM. Rank correlations between RRM EBVs and LM EBVs were between 0.86 to 0.96 for bulls and 0.80 to 0.87 for cows. Average percentage of gain in reliability of EBVs for 305-day yield increased from 4% to 17% for bulls and from 23% to 24% for cows when reliability of EBVs from RRM models was compared to those from LM model. Random regression model fitted by fourth order Legendre polynomials is recommended for genetic evaluations of Brazilian Holstein cattle because of the higher reliability in the estimation of breeding values.

A Review Study of Ocean Surface Mixed Layer Modelling (해양 표면 혼합층 모델링에 대한 고찰)

  • 오임상;이영로
    • 한국해양학회지
    • /
    • v.27 no.4
    • /
    • pp.311-323
    • /
    • 1992
  • The study of ocean surface mixed layer modelling has three different approaches: integral models. diffusive models including K theory and higher turbulence closure scheme, and transilient models. None of them is suitable for all occasions because each model has its specific merits and defects. In the present paper, these three types mixed layer models are described, and their relative advantages and applicabilities are discussed in order to guide the researchers who initiate ocean mixed layer study.

  • PDF