• Title/Summary/Keyword: higher order theory

Search Result 844, Processing Time 0.028 seconds

Higher order free vibration of sandwich curved beams with a functionally graded core

  • Fard, K. Malekzadeh
    • Structural Engineering and Mechanics
    • /
    • v.49 no.5
    • /
    • pp.537-554
    • /
    • 2014
  • In this paper, free vibration of a sandwich curved beam with a functionally graded (FG) core was investigated. Closed-form formulations of two-dimensional (2D) refined higher order beam theory (RHOBT) without neglecting the amount of z/R was derived and used. The present RHOBT analysis incorporated a trapezoidal shape factor that arose due to the fact that stresses through the beam thickness were integrated over a curved surface. The solutions presented herein were compared with the available numerical and analytical solutions in the related literature and excellent agreement was obtained. Effects of some dimensionless parameters on the structural response were investigated to show their effects on fundamental natural frequency of the curved beam. In all the cases, variations of the material constant number were calculated and presented. Effect of changing ratio of core to beam thickness on the fundamental natural frequency depended on the amount of the material constant number.

Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams

  • Rahmani, O.;Refaeinejad, V.;Hosseini, S.A.H.
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.339-350
    • /
    • 2017
  • In this paper, various nonlocal higher-order shear deformation beam theories that consider the size dependent effects in Functionally Graded Material (FGM) beam are examined. The presented theories fulfill the zero traction boundary conditions on the top and bottom surface of the beam and a shear correction factor is not required. Hamilton's principle is used to derive equation of motion as well as related boundary condition. The Navier solution is applied to solve the simply supported boundary conditions and exact formulas are proposed for the bending and static buckling. A parametric study is also included to investigate the effect of gradient index, length scale parameter and length-to-thickness ratio (aspect ratio) on the bending and the static buckling characteristics of FG nanobeams.

Thermo-elastic stability behavior of laminated cross-ply elliptical shells

  • Patel, B.P.;Shukla, K.K.;Nath, Y.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.6
    • /
    • pp.749-755
    • /
    • 2005
  • In this work, thermo-elastic stability behavior of laminated cross-ply elliptical cylindrical shells subjected to uniform temperature rise is studied employing the finite element approach based on higher-order theory that accounts for the transverse shear and transverse normal deformations, and nonlinear in-plane displacement approximations through the thickness with slope discontinuity at the layer interfaces. The combined influence of higher-order shear deformation, shell geometry and non-circularity on the prebuckling thermal stress distribution and critical temperature parameter of laminated elliptical cylindrical shells is examined.

Wave propagation in functionally graded beams using various higher-order shear deformation beams theories

  • Hadji, Lazreg;Zouatnia, Nafissa;Kassoul, Amar
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.143-149
    • /
    • 2017
  • In this work, various higher-order shear deformation beam theories for wave propagation in functionally graded beams are developed. The material properties of FG beam are assumed graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, the governing equations of the wave propagation in the FG beam are derived by using the Hamilton's principle. The analytic dispersion relations of the FG beam are obtained by solving an eigenvalue problem. The effects of the volume fraction distributions on wave propagation of functionally graded beam are discussed in detail. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.

Nonlinear thermal buckling behaviour of laminated composite panel structure including the stretching effect and higher-order finite element

  • Katariya, Pankaj V.;Panda, Subrata K.;Mahapatra, Trupti R.
    • Advances in materials Research
    • /
    • v.6 no.4
    • /
    • pp.349-361
    • /
    • 2017
  • The nonlinear thermal buckling load parameter of the laminated composite panel structure is investigated numerically using the higher-order theory including the stretching effect through the thickness and presented in this research article. The large geometrical distortion of the curved panel structure due to the elevated thermal loading is modeled via Green-Lagrange strain field including all of the higher-order terms to achieve the required generality. The desired solutions are obtained numerically using the finite element steps in conjunction with the direct iterative method. The concurrence of the present nonlinear panel model has been established via adequate comparison study with available published data. Finally, the effect of different influential parameters which affect the nonlinear buckling strength of laminated composite structure are examined through numerous numerical examples and discussed in details.

Three-Dimensional Effects on Added Masses of Ship-Like Forms for Higher Harmonic Modes

  • Y.K.,Chon
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.2
    • /
    • pp.19-30
    • /
    • 1988
  • Sectional added masses of an elastic beam vibrating vertically on the free surface in higher harmonic modes are evaluated. Hydrodynamic interactions between neighboring sections, which strip theory ignores, are considered for modal wave lengths of the order of magnitude of cross-sectional dimensions of the body. An approximate solution of modified Helmholtz equation which becomes a singular perturbation problem at small wave lengths is secured to get an analytic expression for added masses attending higher harmonic modes. As a bound of the present theory, the modified Helmholtz equation is solved for the long flat plate vibrating at high frequency on the water surface without any limitations on modal frequency. Finally, extensive series of numerical calculations are carried out for ship-like forms. It is found that when modal wave length is comparable to or shorter than a typical cross-sectional dimension of a body, sectional interaction effects are large which result in considerable reductions in added masses. For a fuller section, the ratio of added mass reduction is greater. In the limit of vanishing sectional area, the added masses approach to that of flat plate of equal beam. It is shown that the added mass distribution for a Legendre modal from can be determined form the present theory and that the results agree with the extensive three-dimensional determination of Vorus and Hilarides.

  • PDF

Four-mirror optical system for UV submicron lithography (서브미크론 리소그라피를 이한 4 반사광학계의 설계)

  • 박성찬
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.81-87
    • /
    • 1991
  • A design of a four-mirror optical system for submicron lithography using KrF excimer laser beam(λ=248nm) is presented. By using the third order aberration theory, analytic solutions for a telecentric, flat-field, and anastigmatic four-spherical-mirror system (reduction magnification 5$\times$) are found. Aspherization is carried out to the spherical mirror surfaces in order to reduce the residual higher order aberrations and vignetting effect. Finally we obtain a reflection system useful in submicron lithographic application.

  • PDF

Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory

  • Bouderba, Bachir
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.311-325
    • /
    • 2018
  • This article presents the bending analysis of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment. Theoretical formulations are based on a recently developed refined shear deformation theory. The displacement field of the present theory is chosen based on nonlinear variations in the in-plane displacements through the thickness of the plate. The present theory satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the present refined shear deformation theory contains only four unknowns as against five in case of other shear deformation theories. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. The elastic foundation is modeled as non-uniform foundation. The results of the shear deformation theories are compared together. Numerical examples cover the effects of the gradient index, plate aspect ratio, side-to-thickness ratio and elastic foundation parameters on the thermo-mechanical behavior of functionally graded plates. Numerical results show that the present theory can archive accuracy comparable to the existing higher order shear deformation theories that contain more number of unknowns.

Thermal response analysis of multi-layered magneto-electro-thermo-elastic plates using higher order shear deformation theory

  • Vinyas, M.;Harursampath, D.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.667-684
    • /
    • 2020
  • In this article, the static responses of layered magneto-electro-thermo-elastic (METE) plates in thermal environment have been investigated through FE methods. By using Reddy's third order shear deformation theory (TSDT) in association with the Hamilton's principle, the direct and derived quantities of the coupled system have been obtained. The coupled governing equations of METE plates have been derived through condensation technique. Three layered METE plates composed of piezoelectric and piezomagnetic phases are considered for evaluation. For investigating the correctness and accuracy, the results in this article are validated with previous researches. In addition, a special attention has been paid to evaluate the influence of different electro-magnetic boundary conditions and pyrocoupling on the coupled response of METE plates. Finally, the influence of stacking sequences, magnitude of temperature load and aspect ratio on the coupled static response of METE plates are investigated in detail.

Undamped Dynamic Response of Anisotropic Laminated Composite Plates and Shell Structures using a Higher-order Shear Deformation Theory (비등방성 복합적층판 및 쉘의 고차전단변형을 고려한 비감쇄 동적응답)

  • Yoon, Seok Ho;Han, Seong Cheon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.333-340
    • /
    • 1997
  • This paper will expand the third-order shear deformation theory by the double-Fourier series and reduce to the solution of a system of ordinary differential equations in time, which are integrated numerically using Newmark's direct integration method and clarify the undamped dynamic responses for the cross-ply and antisymmetric angle-ply laminated composite plates and shells with simply supported boundary condition. Numerical results for deflections are presented showing the effect of side-to-thickness ratio, aspect ratio, material anisotropy, and lamination scheme.

  • PDF