References
- Asadi, H. (2017a), "Numerical simulation of the fluid-solid interaction for CNT reinforced functionally graded cylindrical shells in thermal environments", Acta Astronaut., 138, 214-224. https://doi.org/10.1016/j.actaastro.2017.05.039
- Asadi, H., Souri, M. and Wang, Q. (2017b), "A numerical study on flow-induced instabilities of supersonic FG-CNT reinforced composite flat panels in thermal environments", Compos. Struct., 171, 113-125. https://doi.org/10.1016/j.compstruct.2017.02.003
- Asadi, H., Kiani, Y., Shakeri, M. and Eslami, M.R. (2015a), "Exact solution for nonlinear thermal stability of geometrically imperfect hybrid laminated composite timoshenko beams embedded with SMA fibers", J. Eng. Mech., 141(4), 04014144. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000873
- Asadi, H., Akbarzadeh, A.H., Chen, Z.T. and Aghdam, M.M. (2015b), "Enhanced thermal stability of functionally graded sandwich cylindrical shells by shape memory alloys", Smart. Mater. Struct., 24(4), 045022. https://doi.org/10.1088/0964-1726/24/4/045022
- Asadi, H., Kiani, Y., Aghdam, M.M. and Shakeri, M. (2015c), "Enhanced thermal buckling of laminated composite cylindrical shells with shape memory alloy", J. Compos. Mater., 50(2), 243-256. https://doi.org/10.1177/0021998315573287
- Baseri, V., Jafari, G.S. and Kolahchi, R. (2016), "Analytical solution for buckling of embedded laminated plates based on higher order shear deformation plate theory", Steel Compos. Struct., Int. J., 21(4), 883-919. https://doi.org/10.12989/scs.2016.21.4.883
- Cetkovic, M. (2016), "Thermal buckling of laminated composite plates using layerwise displacement model", Compos. Struct., 142, 238-253. https://doi.org/10.1016/j.compstruct.2016.01.082
- Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2000), Concepts and Applications of Finite Element Analysis, John Wiley and Sons, Ltd., Singapore.
- Duran, A.V., Fasanella, N.A., Sundararaghavan, V. and Waas, A.M. (2015), "Thermal buckling of composite plates with spatial varying fiber orientations", Compos. Struct., 124, 228-235. https://doi.org/10.1016/j.compstruct.2014.12.065
- Girish, J. and Ramachandra, L.S. (2005), "Thermomechanical postbuckling analysis of symmetric and antisymmetric composite plates with imperfection", Compos. Struct., 67(4), 453-460. https://doi.org/10.1016/j.compstruct.2004.02.004
- Jones, R.M. (1999), Mechanics of Composite Materials, Taylor & Francis, PA, USA.
- Kandasamy, R., Dimitri, R. and Tornabene, F. (2016), "Numerical study on the free vibration and thermal buckling behavior of moderately thick functionally graded structures in thermal environments", Compos. Struct., 157, 207-221. https://doi.org/10.1016/j.compstruct.2016.08.037
- Katariya, P.V. and Panda, S.K. (2016), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircr. Eng. Aerosp. Tec., 88(1), 97-107 https://doi.org/10.1108/AEAT-11-2013-0202
- Nath, Y. and Sandeep, K. (1993), "Postbuckling of symmetrically laminated moderately thick, axisymmetric shallow spherical shells", Int. J. Mech. Sci., 35(11), 965-975. https://doi.org/10.1016/0020-7403(93)90033-Q
- Namdar, O. and Darendeliler, H. (2017), "Buckling, postbuckling and progressive failure analyses of composite laminated plates under compressive loading", Compos. Part B-Eng., 120, 143-151. https://doi.org/10.1016/j.compositesb.2017.03.066
- Nikrad, S.F. and Asadi, H. (2015), "Thermal postbuckling analysis of temperature dependent delaminated composite plates", Thin-Wall. Struct., 97, 296-307. https://doi.org/10.1016/j.tws.2015.09.027
- Nikrad, S.F., Asadi, H., Akbarzadeh, A.H. and Chen, Z.T. (2015), "On thermal instability of delaminated composite plates", Compos. Struct., 132, 1149-1159. https://doi.org/10.1016/j.compstruct.2015.07.019
- Panda, S.K. and Singh, B.N. (2013), "Thermal postbuckling behavior of laminated composite spherical shell panel using NFEM", Mech. Based Des. Struct. Mach., 41(4), 468-488. https://doi.org/10.1080/15397734.2013.797330
- Reddy, J.N. (2004), Mechanics of Laminated Composite: Plates and Shells - Theory and Analysis, CRC Press, Boca Raton, FL, USA.
- Shen, H.S. (2000), "Thermomechanical postbuckling of imperfect shear deformable laminated plates on elastic foundations", Comput. Method Appl. M., 189(3), 761-784. https://doi.org/10.1016/S0045-7825(99)00328-X
- Shen, H.S. (2001), "Thermal postbuckling behavior of imperfect shear deformable laminated plates with temperature-dependent properties", Comput. Method Appl. M., 190(40-41), 5377-5390. https://doi.org/10.1016/S0045-7825(01)00172-4
- Shukla, K.K. and Nath, Y. (2002), "Thermomechanical postbuckling of cross-ply laminated rectangular plates", J. Eng. Mech., 128(1), 93-101. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:1(93)
- Singh, V.K. and Panda, S.K. (2014), "Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels", Thin Wall. Struct., 85, 341-349. https://doi.org/10.1016/j.tws.2014.09.003
- Singh, G. and Rao G.V. (1993), "Thermal post-buckling behavior of laminated composite plates", AIAA Journal, 32(6), 1336-1338. https://doi.org/10.2514/3.12143
- Thankam, V.S., Singh, G., Rao, G.V. and Rath, A.K. (2003), "Thermal post-buckling behavior of laminated plates using a shear-flexible element based on coupled-displacement field", Compos. Struct., 59(3), 351-359. https://doi.org/10.1016/S0263-8223(02)00243-X
- Topal, U. (2009), "Multiobjective optimization of laminated composite cylindrical shells for maximum frequency and buckling load", Mater. Des., 30(7), 2584-2594. https://doi.org/10.1016/j.matdes.2008.09.020
- Upadhyay, A.K. and Shukla, K.K. (2013), "Post-buckling behavior of composite and sandwich skew plates", Int. J. Non Linear Mech., 55, 120-127. https://doi.org/10.1016/j.ijnonlinmec.2013.05.010
- Vosoughi, A.R., Malekzadeh, P., Banan, Mo.R. and Banan, Ma.R. (2011), "Thermal postbuckling of laminated composite skew plates with temperature-dependent properties", Thin-Wall. Struct., 49(7), 913-922. https://doi.org/10.1016/j.tws.2011.02.017
Cited by
- A novel refined shear deformation theory for the buckling analysis of thick isotropic plates vol.69, pp.3, 2019, https://doi.org/10.12989/sem.2019.69.3.335
- Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation vol.70, pp.1, 2019, https://doi.org/10.12989/sem.2019.70.1.055
- Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model vol.33, pp.6, 2017, https://doi.org/10.12989/scs.2019.33.6.805
- Effect of external force on buckling of cytoskeleton intermediate filaments within viscoelastic media vol.25, pp.3, 2020, https://doi.org/10.12989/cac.2020.25.3.205
- A simple analytical model for free vibration and buckling analysis of orthotropic rectangular plates vol.75, pp.2, 2017, https://doi.org/10.12989/sem.2020.75.2.157
- A mechanical model to investigate Aedesaegypti mosquito bite using new techniques and its applications vol.11, pp.6, 2017, https://doi.org/10.12989/mwt.2020.11.6.399
- The nano scale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory vol.10, pp.1, 2017, https://doi.org/10.12989/anr.2021.10.1.015
- Optimization and mathematical modelling of multi-layer beam based on sinusoidal theory vol.79, pp.1, 2017, https://doi.org/10.12989/sem.2021.79.1.109
- Mechanical and thermal buckling analysis of laminated composite plates vol.40, pp.5, 2017, https://doi.org/10.12989/scs.2021.40.5.697