DOI QR코드

DOI QR Code

Nonlinear thermal buckling behaviour of laminated composite panel structure including the stretching effect and higher-order finite element

  • Katariya, Pankaj V. (National Institute of Technology Rourkela) ;
  • Panda, Subrata K. (National Institute of Technology Rourkela) ;
  • Mahapatra, Trupti R. (Veer Surendra Sai University of Technology (VSSUT))
  • Received : 2018.02.28
  • Accepted : 2018.04.06
  • Published : 2017.12.25

Abstract

The nonlinear thermal buckling load parameter of the laminated composite panel structure is investigated numerically using the higher-order theory including the stretching effect through the thickness and presented in this research article. The large geometrical distortion of the curved panel structure due to the elevated thermal loading is modeled via Green-Lagrange strain field including all of the higher-order terms to achieve the required generality. The desired solutions are obtained numerically using the finite element steps in conjunction with the direct iterative method. The concurrence of the present nonlinear panel model has been established via adequate comparison study with available published data. Finally, the effect of different influential parameters which affect the nonlinear buckling strength of laminated composite structure are examined through numerous numerical examples and discussed in details.

Keywords

References

  1. Asadi, H. (2017a), "Numerical simulation of the fluid-solid interaction for CNT reinforced functionally graded cylindrical shells in thermal environments", Acta Astronaut., 138, 214-224. https://doi.org/10.1016/j.actaastro.2017.05.039
  2. Asadi, H., Souri, M. and Wang, Q. (2017b), "A numerical study on flow-induced instabilities of supersonic FG-CNT reinforced composite flat panels in thermal environments", Compos. Struct., 171, 113-125. https://doi.org/10.1016/j.compstruct.2017.02.003
  3. Asadi, H., Kiani, Y., Shakeri, M. and Eslami, M.R. (2015a), "Exact solution for nonlinear thermal stability of geometrically imperfect hybrid laminated composite timoshenko beams embedded with SMA fibers", J. Eng. Mech., 141(4), 04014144. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000873
  4. Asadi, H., Akbarzadeh, A.H., Chen, Z.T. and Aghdam, M.M. (2015b), "Enhanced thermal stability of functionally graded sandwich cylindrical shells by shape memory alloys", Smart. Mater. Struct., 24(4), 045022. https://doi.org/10.1088/0964-1726/24/4/045022
  5. Asadi, H., Kiani, Y., Aghdam, M.M. and Shakeri, M. (2015c), "Enhanced thermal buckling of laminated composite cylindrical shells with shape memory alloy", J. Compos. Mater., 50(2), 243-256. https://doi.org/10.1177/0021998315573287
  6. Baseri, V., Jafari, G.S. and Kolahchi, R. (2016), "Analytical solution for buckling of embedded laminated plates based on higher order shear deformation plate theory", Steel Compos. Struct., Int. J., 21(4), 883-919. https://doi.org/10.12989/scs.2016.21.4.883
  7. Cetkovic, M. (2016), "Thermal buckling of laminated composite plates using layerwise displacement model", Compos. Struct., 142, 238-253. https://doi.org/10.1016/j.compstruct.2016.01.082
  8. Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2000), Concepts and Applications of Finite Element Analysis, John Wiley and Sons, Ltd., Singapore.
  9. Duran, A.V., Fasanella, N.A., Sundararaghavan, V. and Waas, A.M. (2015), "Thermal buckling of composite plates with spatial varying fiber orientations", Compos. Struct., 124, 228-235. https://doi.org/10.1016/j.compstruct.2014.12.065
  10. Girish, J. and Ramachandra, L.S. (2005), "Thermomechanical postbuckling analysis of symmetric and antisymmetric composite plates with imperfection", Compos. Struct., 67(4), 453-460. https://doi.org/10.1016/j.compstruct.2004.02.004
  11. Jones, R.M. (1999), Mechanics of Composite Materials, Taylor & Francis, PA, USA.
  12. Kandasamy, R., Dimitri, R. and Tornabene, F. (2016), "Numerical study on the free vibration and thermal buckling behavior of moderately thick functionally graded structures in thermal environments", Compos. Struct., 157, 207-221. https://doi.org/10.1016/j.compstruct.2016.08.037
  13. Katariya, P.V. and Panda, S.K. (2016), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircr. Eng. Aerosp. Tec., 88(1), 97-107 https://doi.org/10.1108/AEAT-11-2013-0202
  14. Nath, Y. and Sandeep, K. (1993), "Postbuckling of symmetrically laminated moderately thick, axisymmetric shallow spherical shells", Int. J. Mech. Sci., 35(11), 965-975. https://doi.org/10.1016/0020-7403(93)90033-Q
  15. Namdar, O. and Darendeliler, H. (2017), "Buckling, postbuckling and progressive failure analyses of composite laminated plates under compressive loading", Compos. Part B-Eng., 120, 143-151. https://doi.org/10.1016/j.compositesb.2017.03.066
  16. Nikrad, S.F. and Asadi, H. (2015), "Thermal postbuckling analysis of temperature dependent delaminated composite plates", Thin-Wall. Struct., 97, 296-307. https://doi.org/10.1016/j.tws.2015.09.027
  17. Nikrad, S.F., Asadi, H., Akbarzadeh, A.H. and Chen, Z.T. (2015), "On thermal instability of delaminated composite plates", Compos. Struct., 132, 1149-1159. https://doi.org/10.1016/j.compstruct.2015.07.019
  18. Panda, S.K. and Singh, B.N. (2013), "Thermal postbuckling behavior of laminated composite spherical shell panel using NFEM", Mech. Based Des. Struct. Mach., 41(4), 468-488. https://doi.org/10.1080/15397734.2013.797330
  19. Reddy, J.N. (2004), Mechanics of Laminated Composite: Plates and Shells - Theory and Analysis, CRC Press, Boca Raton, FL, USA.
  20. Shen, H.S. (2000), "Thermomechanical postbuckling of imperfect shear deformable laminated plates on elastic foundations", Comput. Method Appl. M., 189(3), 761-784. https://doi.org/10.1016/S0045-7825(99)00328-X
  21. Shen, H.S. (2001), "Thermal postbuckling behavior of imperfect shear deformable laminated plates with temperature-dependent properties", Comput. Method Appl. M., 190(40-41), 5377-5390. https://doi.org/10.1016/S0045-7825(01)00172-4
  22. Shukla, K.K. and Nath, Y. (2002), "Thermomechanical postbuckling of cross-ply laminated rectangular plates", J. Eng. Mech., 128(1), 93-101. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:1(93)
  23. Singh, V.K. and Panda, S.K. (2014), "Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels", Thin Wall. Struct., 85, 341-349. https://doi.org/10.1016/j.tws.2014.09.003
  24. Singh, G. and Rao G.V. (1993), "Thermal post-buckling behavior of laminated composite plates", AIAA Journal, 32(6), 1336-1338. https://doi.org/10.2514/3.12143
  25. Thankam, V.S., Singh, G., Rao, G.V. and Rath, A.K. (2003), "Thermal post-buckling behavior of laminated plates using a shear-flexible element based on coupled-displacement field", Compos. Struct., 59(3), 351-359. https://doi.org/10.1016/S0263-8223(02)00243-X
  26. Topal, U. (2009), "Multiobjective optimization of laminated composite cylindrical shells for maximum frequency and buckling load", Mater. Des., 30(7), 2584-2594. https://doi.org/10.1016/j.matdes.2008.09.020
  27. Upadhyay, A.K. and Shukla, K.K. (2013), "Post-buckling behavior of composite and sandwich skew plates", Int. J. Non Linear Mech., 55, 120-127. https://doi.org/10.1016/j.ijnonlinmec.2013.05.010
  28. Vosoughi, A.R., Malekzadeh, P., Banan, Mo.R. and Banan, Ma.R. (2011), "Thermal postbuckling of laminated composite skew plates with temperature-dependent properties", Thin-Wall. Struct., 49(7), 913-922. https://doi.org/10.1016/j.tws.2011.02.017

Cited by

  1. A novel refined shear deformation theory for the buckling analysis of thick isotropic plates vol.69, pp.3, 2019, https://doi.org/10.12989/sem.2019.69.3.335
  2. Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation vol.70, pp.1, 2019, https://doi.org/10.12989/sem.2019.70.1.055
  3. Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model vol.33, pp.6, 2017, https://doi.org/10.12989/scs.2019.33.6.805
  4. Effect of external force on buckling of cytoskeleton intermediate filaments within viscoelastic media vol.25, pp.3, 2020, https://doi.org/10.12989/cac.2020.25.3.205
  5. A simple analytical model for free vibration and buckling analysis of orthotropic rectangular plates vol.75, pp.2, 2017, https://doi.org/10.12989/sem.2020.75.2.157
  6. A mechanical model to investigate Aedesaegypti mosquito bite using new techniques and its applications vol.11, pp.6, 2017, https://doi.org/10.12989/mwt.2020.11.6.399
  7. The nano scale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory vol.10, pp.1, 2017, https://doi.org/10.12989/anr.2021.10.1.015
  8. Optimization and mathematical modelling of multi-layer beam based on sinusoidal theory vol.79, pp.1, 2017, https://doi.org/10.12989/sem.2021.79.1.109
  9. Mechanical and thermal buckling analysis of laminated composite plates vol.40, pp.5, 2017, https://doi.org/10.12989/scs.2021.40.5.697