• Title/Summary/Keyword: higher order accuracy

Search Result 789, Processing Time 0.027 seconds

The efficacy of the reverse contrast mode in digital radiography for the detection of proximal dentinal caries

  • Miri, Shimasadat;Mehralizadeh, Sandra;Sadri, Donya;Motamedi, Mahmood Reza Kalantar;Soltani, Parisa
    • Imaging Science in Dentistry
    • /
    • v.45 no.3
    • /
    • pp.141-145
    • /
    • 2015
  • Purpose: This study evaluated the diagnostic accuracy of the reverse contrast mode in intraoral digital radiography for the detection of proximal dentinal caries, in comparison with the original digital radiographs. Materials and Methods: Eighty extracted premolars with no clinically apparent caries were selected, and digital radiographs of them were taken separately in standard conditions. Four observers examined the original radiographs and the same radiographs in the reverse contrast mode with the goal of identifying proximal dentinal caries. Microscopic sections $5{\mu}m$ in thickness were prepared from the teeth in the mesiodistal direction. Four slides prepared from each sample used as the diagnostic gold standard. The data were analyzed using SPSS (${\alpha}=0.05$). Results: Our results showed that the original radiographs in order to identify proximal dentinal caries had the following values for sensitivity, specificity, positive predictive value, negative predictive value, and accuracy, respectively: 72.5%, 90%, 87.2%, 76.5%, and 80.9%. For the reverse contrast mode, however, the corresponding values were 63.1%, 89.4%, 87.1%, 73.5%, and 78.8%, respectively. The sensitivity of original digital radiograph for detecting proximal dentinal caries was significantly higher than that of reverse contrast mode (p<0.05). However, no statistically significant differences were found regarding specificity, positive predictive value, negative predictive value, or accuracy (p>0.05). Conclusion: The sensitivity of the original digital radiograph for detecting proximal dentinal caries was significantly higher than that of the reversed contrast images. However, no statistically significant differences were found between these techniques regarding specificity, positive predictive value, negative predictive value, or accuracy.

New Automatic Taxonomy Generation Algorithm for the Audio Genre Classification (음악 장르 분류를 위한 새로운 자동 Taxonomy 구축 알고리즘)

  • Choi, Tack-Sung;Moon, Sun-Kook;Park, Young-Cheol;Youn, Dae-Hee;Lee, Seok-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.111-118
    • /
    • 2008
  • In this paper, we propose a new automatic taxonomy generation algorithm for the audio genre classification. The proposed algorithm automatically generates hierarchical taxonomy based on the estimated classification accuracy at all possible nodes. The estimation of classification accuracy in the proposed algorithm is conducted by applying the training data to classifier using k-fold cross validation. Subsequent classification accuracy is then to be tested at every node which consists of two clusters by applying one-versus-one support vector machine. In order to assess the performance of the proposed algorithm, we extracted various features which represent characteristics such as timbre, rhythm, pitch and so on. Then, we investigated classification performance using the proposed algorithm and previous flat classifiers. The classification accuracy reaches to 89 percent with proposed scheme, which is 5 to 25 percent higher than the previous flat classification methods. Using low-dimensional feature vectors, in particular, it is 10 to 25 percent higher than previous algorithms for classification experiments.

Comparison of multi-stage explicit methods for numerical computation of the unsteady Navier-Stokes equations (비정상 Navier-Stokes 방정식의 수치해석을 위한 다단계 외재법의 성능 비교)

  • Seo,Yong-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.202-212
    • /
    • 1997
  • In this study, performance of the multi-stage explicit methods for numerical computation of the unsteady Navier-Stokes equations is investigated. Three methods under consideration are 1 st-, 2 nd-, and 4 th-order Runge-Kutta (R-K) methods. Compared in this estimation is stability, accuracy, and CPU time of each method. The computational codes developed are applied to the two-dimensional flow in a square cavity driven by an oscillating lid. It turned out that at Reynolds number 400, the 1 st-order R-K method is the best, while at 3200 the 2 nd-order R-K is recommended. At higher Reynolds numbers, it is conjectured that the 4 th-order R-K method will be the best algorithm among three due to its highest stability.

Advanced 1D Structural Models for Flutter Analysis of Lifting Surfaces

  • Petrolo, Marco
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.199-209
    • /
    • 2012
  • An advanced aeroelastic formulation for flutter analyses is presented in this paper. Refined 1D structural models were coupled with the doublet lattice method, and the g-method was used for flutter analyses. Structural models were developed in the framework of the Carrera Unified Formulation (CUF). Higher-order 1D structural models were obtained by using Taylor-like expansions of the cross-section displacement field of the structure. The order (N) of the expansion was considered as a free parameter since it can be arbitrarily chosen as an input of the analysis. Convergence studies on the order of the structural model can be straightforwardly conducted in order to establish the proper 1D structural model for a given problem. Flutter analyses were conducted on several wing configurations and the results were compared to those from literature. Results show the enhanced capabilities of CUF 1D in dealing with the flutter analysis of typical wing structures with high accuracy and low computational costs.

HIGH ORDER EMBEDDED RUNGE-KUTTA SCHEME FOR ADAPTIVE STEP-SIZE CONTROL IN THE INTERACTION PICTURE METHOD

  • Balac, Stephane
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.238-266
    • /
    • 2013
  • The Interaction Picture (IP) method is a valuable alternative to Split-step methods for solving certain types of partial differential equations such as the nonlinear Schr$\ddot{o}$dinger equation or the Gross-Pitaevskii equation. Although very similar to the Symmetric Split-step (SS) method in its inner computational structure, the IP method results from a change of unknown and therefore do not involve approximation such as the one resulting from the use of a splitting formula. In its standard form the IP method such as the SS method is used in conjunction with the classical 4th order Runge-Kutta (RK) scheme. However it appears to be relevant to look for RK scheme of higher order so as to improve the accuracy of the IP method. In this paper we investigate 5th order Embedded Runge-Kutta schemes suited to be used in conjunction with the IP method and designed to deliver a local error estimation for adaptive step size control.

SUPERCONVERGENCE OF HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR SECOND-ORDER ELLIPTIC EQUATIONS

  • MOON, MINAM;LIM, YANG HWAN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.295-308
    • /
    • 2016
  • We propose a projection-based analysis of a new hybridizable discontinuous Gale-rkin method for second order elliptic equations. The method is more advantageous than the standard HDG method in a sense that the new method has higher-order accuracy and lower computational cost, and is more flexible. Notable distinctions of our new method, when compared to the standard HDG emthod, are that our method uses $L^2$-projection and suitable stabilization parameter depending on a mesh size for superconvergence. We show that the error for the solution of the equation converges with order p + 2 when we only use polynomials of degree p + 1 as a finite element space without postprocessing. After establishing the theory, we carry out numerical tests to demonstrate and ensure that the proposed method is effective and accurate in practice.

Analysis and Assessment by Thermal Desorption Method of Mixed Organic Solvents Collected on Activated Carbon(AC) and Activated Carbon Fiber(ACF) (AC 및 ACF에 포집된 혼합 유기용제의 열탈착 방법에 따른 분석 및 평가)

  • 원정일;김기환;신창섭
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.1
    • /
    • pp.72-90
    • /
    • 2001
  • This study was conducted to evaluate desorption efficiencies accuracy and precision by $CS_2$ and thermal desorption method for polar and non-polar organic solvents collected on activated carbon(AC), activated carbon fiber(ACF), carbosieve SIII, materials tested were Methyl alcohol, n-Hexane, Benzene, Trichloroethylene, Methyl isobutyl ketone and methyl cellosolve acetate and six different concentration levels of samples were made. The results were as follows ; 1. Accuracy on kind adsorbent and desorption method was low. In case of $CS_2$ desorption solvent, Overall B and Overall CV on AC and ACF were 43% and 6.63%, respectively. In case of thermal desorption method, accuracy of thermal desorption method appeared higher than solvent desorption method by AC 18.0%, 3.54%, ACF 2.6%, 2.57%, Carbosieve SIII 13.7% and 1.97%, respectively. 2. In the concentration level III, accuracy of thermal desorption method on adsorbent was in order as follow ; ACF > Carbosieve SIII > AC in the methyl alcohol and Carbosieve SIII > ACF > AC in the rest of them all subject material and Concentration levels showed good precision at EPA recommend standard (${\leq}{\;}30%$) 3. DEs by type of organic solvent adsorbent and desorption method are as follows ; In the case that desorption solvent is $CS_2$, DE of Methyl alcohol is AC 47.5%, DE of all materials is ACF about 50%. In the case of thermal desorption method, DE of Methyl alcohol is AC 82.0%, ACF 97.4%, Carbosieve SIII 86.3%. DE of the later case is prominently improved more than one of former. In particular, Except that DE of EGMEA is ACF 88.5%, DE of the rest of it is more than 95% which is recommend standard MDHS 72. With the result of this study, in order to measure various organic solvent occurring from the working environment, in the case of thermal desorption method, we can get the accurate exposure assessment, reduce the cost, and use ACF as thermal desorption sorbent which available with easy.

  • PDF

A research on the emotion classification and precision improvement of EEG(Electroencephalogram) data using machine learning algorithm (기계학습 알고리즘에 기반한 뇌파 데이터의 감정분류 및 정확도 향상에 관한 연구)

  • Lee, Hyunju;Shin, Dongil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.20 no.5
    • /
    • pp.27-36
    • /
    • 2019
  • In this study, experiments on the improvement of the emotion classification, analysis and accuracy of EEG data were proceeded, which applied DEAP (a Database for Emotion Analysis using Physiological signals) dataset. In the experiment, total 32 of EEG channel data measured from 32 of subjects were applied. In pre-processing step, 256Hz sampling tasks of the EEG data were conducted, each wave range of the frequency (Hz); Theta, Slow-alpha, Alpha, Beta and Gamma were then extracted by using Finite Impulse Response Filter. After the extracted data were classified through Time-frequency transform, the data were purified through Independent Component Analysis to delete artifacts. The purified data were converted into CSV file format in order to conduct experiments of Machine learning algorithm and Arousal-Valence plane was used in the criteria of the emotion classification. The emotions were categorized into three-sections; 'Positive', 'Negative' and 'Neutral' meaning the tranquil (neutral) emotional condition. Data of 'Neutral' condition were classified by using Cz(Central zero) channel configured as Reference channel. To enhance the accuracy ratio, the experiment was performed by applying the attributes selected by ASC(Attribute Selected Classifier). In "Arousal" sector, the accuracy of this study's experiments was higher at "32.48%" than Koelstra's results. And the result of ASC showed higher accuracy at "8.13%" compare to the Liu's results in "Valence". In the experiment of Random Forest Classifier adapting ASC to improve accuracy, the higher accuracy rate at "2.68%" was confirmed than Total mean as the criterion compare to the existing researches.

Field Crop Classification Using Multi-Temporal High-Resolution Satellite Imagery: A Case Study on Garlic/Onion Field (고해상도 다중시기 위성영상을 이용한 밭작물 분류: 마늘/양파 재배지 사례연구)

  • Yoo, Hee Young;Lee, Kyung-Do;Na, Sang-Il;Park, Chan-Won;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.621-630
    • /
    • 2017
  • In this paper, a study on classification targeting a main production area of garlic and onion was carried out in order to figure out the applicability of multi-temporal high-resolution satellite imagery for field crop classification. After collecting satellite imagery in accordance with the growth cycle of garlic and onion, classifications using each sing date imagery and various combinations of multi-temporal dataset were conducted. In the case of single date imagery, high classification accuracy was obtained in December when the planting was completed and March when garlic and onion started to grow vigorously. Meanwhile, higher classification accuracy was obtained when using multi-temporal dataset rather than single date imagery. However, more images did not guarantee higher classification accuracy. Rather, the imagery at the planting season or right after planting reduced classification accuracy. The highest classification accuracy was obtained when using the combination of March, April and May data corresponding the growth season of garlic and onion. Therefore, it is recommended to secure imagery at main growth season in order to classify garlic and onion field using multi-temporal satellite imagery.

Pressure loading, end- shortening and through- thickness shearing effects on geometrically nonlinear response of composite laminated plates using higher order finite strip method

  • Sherafat, Mohammad H.;Ghannadpour, Seyyed Amir M.;Ovesy, Hamid R.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.677-691
    • /
    • 2013
  • A semi-analytical finite strip method is developed for analyzing the post-buckling behavior of rectangular composite laminated plates of arbitrary lay-up subjected to progressive end-shortening in their plane and to normal pressure loading. In this method, all the displacements are postulated by the appropriate harmonic shape functions in the longitudinal direction and polynomial interpolation functions in the transverse direction. Thin or thick plates are assumed and correspondingly the Classical Plate Theory (CPT) or Higher Order Plate Theory (HOPT) is applied. The in-plane transverse deflection is allowed at the loaded ends of the plate, whilst the same deflection at the unloaded edges is either allowed to occur or completely restrained. Geometric non-linearity is introduced in the strain-displacement equations in the manner of the von-Karman assumptions. The formulations of the finite strip methods are based on the concept of the principle of the minimum potential energy. The Newton-Raphson method is used to solve the non-linear equilibrium equations. A number of applications involving isotropic plates, symmetric and unsymmetric cross-ply laminates are described to investigate the through-thickness shearing effects as well as the effect of pressure loading, end-shortening and boundary conditions. The study of the results has revealed that the response of the composite laminated plates is particularly influenced by the application of the Higher Order Plate Theory (HOPT) and normal pressure loading. In the relatively thick plates, the HOPT results have more accuracy than CPT.