• Title/Summary/Keyword: higher mode effect

Search Result 522, Processing Time 0.034 seconds

How Does the Presentation Mode of Product Information Affect Product Evaluation? : The Mediation of Construal Level and the Moderation of Response Time

  • Cho, Hyun Young
    • International Journal of Contents
    • /
    • v.16 no.1
    • /
    • pp.44-56
    • /
    • 2020
  • The purpose of this study was to examine how the presentation mode (sequential- vs. simultaneous-mode) of information influences its evaluation. Three experiments revealed the interaction effect between the presentation mode and the valence of the product information. When respondents read about the positive aspects of the product, the evaluation was higher in the simultaneous presentation mode than in the sequential presentation mode. For negative product information, respondents' evaluation was higher in the sequential presentation mode than in the simultaneous presentation mode. The simultaneous presentation mode intensified the impact of the information valence on evaluation. This study proposed that the sequential and the simultaneous presentation modes prime high and low construal levels, respectively. The mediation analysis provides support for such a prediction. Finally, the mediating effect of construal levels in evaluation was shown to disappear when respondents focused on the product information for a longer duration, while the mediation effect remained when the response time was short.

Effects of diaphragm flexibility on the seismic design acceleration of precast concrete diaphragms

  • Zhang, Dichuan;Fleischman, Robert B.;Lee, Deuckhang
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.273-282
    • /
    • 2020
  • A new seismic design methodology for precast concrete diaphragms has been developed and incorporated into the current American seismic design code. This design methodology recognizes that diaphragm inertial forces during earthquakes are highly influenced by higher dynamic vibration modes and incorporates the higher mode effect into the diaphragm seismic design acceleration determination using a first mode reduced method, which applies the response modification coefficient only to the first mode response but keeps the higher mode response unreduced. However the first mode reduced method does not consider effects of diaphragm flexibility, which plays an important role on the diaphragm seismic response especially for the precast concrete diaphragm. Therefore this paper investigated the effect of diaphragm flexibility on the diaphragm seismic design acceleration for precast concrete shear wall structures through parametric studies. Several design parameters were considered including number of stories, diaphragm geometries and stiffness. It was found that the diaphragm flexibility can change the structural dynamic properties and amplify the diaphragm acceleration during earthquakes. Design equations for mode contribution factors considering the diaphragm flexibility were first established through modal analyses to modify the first mode reduced method in the current code. The modified first mode reduced method has then been verified through nonlinear time history analyses.

Higher-mode effects for soil-structure systems under different components of near-fault ground motions

  • Khoshnoudian, Faramarz;Ahmadi, Ehsan;Sohrabi, Sina;Kiani, Mahdi
    • Earthquakes and Structures
    • /
    • v.7 no.1
    • /
    • pp.83-99
    • /
    • 2014
  • This study is devoted to estimate higher-mode effects for multi-story structures with considering soil-structure interaction subjected to decomposed parts of near-fault ground motions. The soil beneath the super-structure is simulated based on the Cone model concept. Two-dimensional structural models of 5, 15, and 25-story shear buildings are idealized by using nonlinear stick models. The ratio of base shears for the soil-MDOF structure system to those obtained from the equivalent soil-SDOF structure system is selected as an estimator to quantify the higher-mode effects. The results demonstrate that the trend of higher-mode effects is regular for pulse component and has a descending variation with respect to the pulse period, whereas an erratic pattern is obtained for high-frequency component. Moreover, the effect of pulse component on higher modes is more significant than high-frequency part for very short-period pulses and as the pulse period increases this phenomenon becomes vice-versa. SSI mechanism increases the higher-mode effects for both pulse and high-frequency components and slenderizing the super-structure amplifies such effects. Furthermore, for low story ductility ranges, increasing nonlinearity level leads to intensify the higher-mode effects; however, for high story ductility, such effects mitigates.

Verification of the Moderating Effect of Course Satisfaction on Learning Presence, and Academic Performance According to Course Delivery Mode

  • Sanghee KIM
    • Educational Technology International
    • /
    • v.24 no.1
    • /
    • pp.29-51
    • /
    • 2023
  • This study examined the moderating effect of course satisfaction with class on the relationship between the mode of course delivery and learning presence and performance in university settings. Results showed that there was a moderating effect of the course satisfaction on the relationship between course delivery mode and learning presence. Specifically, higher satisfaction with instructor's teaching activities was associated with improved learning presence in face-to-face, blended, and online learning, in that order. However, there was no significant moderating effect on academic performance. These findings suggest that universities should consider not only the mode of course delivery and highlight the importance of systematic course design by instructors.

Comparison of Drain-Induced-Barrier-Lowering (DIBL) Effect by Different Drain Engineering

  • Choi, Byoung-Seon;Choi, Pyung-Ho;Choi, Byoung-Deog
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.342-343
    • /
    • 2012
  • We studied the Drain-Induced-Barrier-Lowering (DIBL) effect by different drain engineering. One other drain engineering is symmetric source-drain n-channel MOSFETs (SSD NMOSs), the other drain engineering is asymmetric source-drain n-channel MOSFETs (ASD NMOSs). Devices were fabricated using state of art 40 nm dynamic-random-access-memory (DRAM) technology. These devices have different modes which are deep drain junction mode in SSD NMOSs and shallow drain junction mode in ASD NMOSs. The shallow drain junction mode means that drain is only Lightly-Doped-Drain (LDD). The deep drain junction mode means that drain have same process with source. The threshold voltage gap between low drain voltage ($V_D$=0.05V) and high drain voltage ($V_D$=3V) is 0.088V in shallow drain junction mode and 0.615V in deep drain junction mode at $0.16{\mu}m$ of gate length. The DIBL coefficients are 26.5 mV/V in shallow drain junction mode and 205.7 mV/V in deep drain junction mode. These experimental results present that DIBL effect is higher in deep drain junction mode than shallow drain junction mode. These results are caused that ASD NMOSs have low drain doping level and low lateral electric field.

  • PDF

Flow Actuation by DC Surface Discharge Plasma Actuator in Different Discharge Modes

  • Kim, Yeon-Sung;Shin, Jichul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.339-346
    • /
    • 2015
  • Aerodynamic flow control phenomena were investigated with a low-current DC surface discharge plasma actuator. The plasma actuator was found to operate in three different discharge modes with similar discharge currents of about 1 mA or less. Stable continuous DC discharge without audible noise was obtained at higher ballast resistances and lower discharge currents. However, even with continuous DC power input, a low-frequency self-pulsed discharge was obtained at lower ballast resistances, and a high-frequency self-pulsed discharge was obtained at higher set-point currents and higher ballast resistances, both with audible noise. The Schlieren image reveals that the low-frequency self-pulsed mode produces a synthetic jet-like flow implying that a gas heating effect plays a role, even though the discharge current is small. The high-frequency self-pulsed mode produces pulsed jets in a tangent direction, and the continuous DC mode produces a steady straight pressure wave. Particle image velocimetry (PIV) images reveal that the induced flow field by the low-frequency self-pulsed mode has flow propagating in the radial direction and centered between the electrodes. The high-frequency self-pulsed mode and continuous DC mode produce flow from the anode to the cathode. The perturbed region downstream of the cathode is larger in the high-frequency self-pulsed mode with similar maximum speeds.

Approximate Analysis for Shear Force Amplification Effect in Ordinary RC Shear Walls (철근콘크리트 보통전단벽의 전단력 증폭효과 근사해석)

  • Jeon, Seong-Ha;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.129-139
    • /
    • 2020
  • An approximate analysis method is proposed to predict the dynamic amplification of shear forces in ordinary reinforced concrete shear walls as a preliminary study. First, a seismic design for three groups of ordinary reinforced concrete shear walls higher than 60 m was created on the basis of nonlinear dynamic analysis. Causes for the dynamic amplification effect of shear forces were investigated through a detailed evaluation of the nonlinear dynamic analysis result. A new modal combination rule was proposed on the basis of that observation, in which fundamental mode response and combined higher mode response were summed directly. The fundamental mode response was approximated by nonlinear static analysis result, while higher mode response was computed using response spectrum analysis for equivalent linear structural models with the effective stiffness based on the nonlinear dynamic analysis result. The proposed approximate analysis generally predicted vertical distribution of story shear and shear forces of individual walls from the nonlinear dynamic analysis with comparable accuracy.

Free Vibration of a Thin Circular Cylindrical Shell in Fluid (유체중의 얇은 원통쉘의 자유진동)

  • Liang, G.H.;Kawatate, K.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.3
    • /
    • pp.117-125
    • /
    • 1991
  • Two methods are presented to calculate the natural frequency of an elastic thin circular cylindrical shell vibrating in fluid. Both of them give the natural frequency in analytical expression One is in a simple form and suitable for higher deformation mode of the shell. Another seems to be exact and be used to a case of the shell partially immersed in fluid. When the shell is fully immersed in fluid results show: fur the lower deformation mode of the shell, the surrounding fluid has remarkable effect upon the natural frequency; for the higher mode, the fluid effect becomes small. When the shell is partially immersed in fluid. it does not occur always that the greatest effect take place at the lowest deformation mode.

  • PDF

Vertical distributions of lateral forces on base isolated structures considering higher mode effects

  • Tsai, C.S.;Chen, Wen-Shin;Chen, Bo-Jen;Pong, Wen-Shen
    • Structural Engineering and Mechanics
    • /
    • v.23 no.5
    • /
    • pp.543-562
    • /
    • 2006
  • Base isolation technology has been accepted as a feasible and attractive way in improving seismic resistance of structures. The seismic design of new seismically isolated structures is mainly governed by the Uniform Building Code (UBC-97) published by the International Conference of Building Officials. In the UBC code, the distribution formula of the inertial (or lateral) forces leads to an inverted triangular shape in the vertical direction. It has been found to be too conservative for most isolated structures through experimental, computational and real earthquake examinations. In this paper, four simple and reasonable design formulae, based on the first mode of the base-isolated structures, for the lateral force distribution on isolated structures have been validated by a multiple-bay three-story base-isolated steel structure tested on the shaking table. Moreover, to obtain more accurate results for base-isolated structures in which higher mode contributions are more likely expected during earthquakes, another four inertial force distribution formulae are also proposed to include higher mode effects. Besides the experimental verification through shaking table tests, the vertical distributions of peak accelerations computed by the proposed design formulae are in good agreement with the recorded floor accelerations of the USC University Hospital during the Northridge earthquake.

Hysteresis and Mode Transition in Electrodeless Fluorescent Lamp (무전극 램프에서의 히스테리시스와 모드 변환)

  • Lee, Joo-Ho;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.453-453
    • /
    • 2007
  • Electrodeless fluorescent lamp exhibit two modes of operation: a low density mode in which the power is capacitively coupled to the plasma and which is known as the E-mode, and a higher density mode which is an inductive discharge known as the H-mode. The transition between these two(E to H) mode exhibits hysteresis. It is observed that transition currents change at different frequencies and hysteresis exists not only between the starting and minimum maintaining currents of the electromagnetic mode (H mode) discharge but also between the starting and minimum maintaining currents of the electrostatic mode (E mode) discharge. Hysteresis effect can be important role in dimming system.

  • PDF