• 제목/요약/키워드: high-throughput rna sequencing

검색결과 75건 처리시간 0.033초

Profiling Total Viable Bacteria in a Hemodialysis Water Treatment System

  • Chen, Lihua;Zhu, Xuan;Zhang, Menglu;Wang, Yuxin;Lv, Tianyu;Zhang, Shenghua;Yu, Xin
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권5호
    • /
    • pp.995-1004
    • /
    • 2017
  • Culture-dependent methods, such as heterotrophic plate counting (HPC), are usually applied to evaluate the bacteriological quality of hemodialysis water. However, these methods cannot detect the uncultured or viable but non-culturable (VBNC) bacteria, both of which may be quantitatively predominant throughout the hemodialysis water treatment system. Therefore, propidium monoazide (PMA)-qPCR associated with HPC was used together to profile the distribution of the total viable bacteria in such a system. Moreover, high-throughput sequencing of 16S rRNA gene amplicons was utilized to analyze the microbial community structure and diversity. The HPC results indicated that the total bacterial counts conformed to the standards, yet the bacteria amounts were abruptly enhanced after carbon filter treatment. Nevertheless, the bacterial counts detected by PMA-qPCR, with the highest levels of $2.14{\times}10^7copies/100ml$ in softener water, were much higher than the corresponding HPC results, which demonstrated the occurrence of numerous uncultured or VBNC bacteria among the entire system before reverse osmosis (RO). In addition, the microbial community structure was very different and the diversity was enhanced after the carbon filter. Although the diversity was minimized after RO treatment, pathogens such as Escherichia could still be detected in the RO effluent. In general, both the amounts of bacteria and the complexity of microbial community in the hemodialysis water treatment system revealed by molecular approaches were much higher than by traditional method. These results suggested the higher health risk potential for hemodialysis patients from the up-to-standard water. The treatment process could also be optimized, based on the results of this study.

Rumen bacteria influence milk protein yield of yak grazing on the Qinghai-Tibet plateau

  • Fan, Qingshan;Wanapat, Metha;Hou, Fujiang
    • Animal Bioscience
    • /
    • 제34권9호
    • /
    • pp.1466-1478
    • /
    • 2021
  • Objective: Ruminants are completely dependent on their microbiota for rumen fermentation, feed digestion, and consequently, their metabolism for productivity. This study aimed to evaluate the rumen bacteria of lactating yaks with different milk protein yields, using high-throughput sequencing technology, in order to understand the influence of these bacteria on milk production. Methods: Yaks with similar high milk protein yield (high milk yield and high milk protein content, HH; n = 12) and low milk protein yield (low milk yield and low milk protein content, LL; n = 12) were randomly selected from 57 mid-lactation yaks. Ruminal contents were collected using an oral stomach tube from the 24 yaks selected. High-throughput sequencing of bacterial 16S rRNA gene was used. Results: Ruminal ammonia N, total volatile fatty acids, acetate, propionate, and isobutyrate concentrations were found to be higher in HH than LL yaks. Community richness (Chao 1 index) and diversity indices (Shannon index) of rumen microbiota were higher in LL than HH yaks. Relative abundances of the Bacteroidetes and Tenericutes phyla in the rumen fluid were significantly increased in HH than LL yaks, but significantly decreased for Firmicutes. Relative abundances of the Succiniclasticum, Butyrivibrio 2, Prevotella 1, and Prevotellaceae UCG-001 genera in the rumen fluid of HH yaks was significantly increased, but significantly decreased for Christensenellaceae R-7 group and Coprococcus 1. Principal coordinates analysis on unweighted UniFrac distances revealed that the bacterial community structure of rumen differed between yaks with high and low milk protein yields. Furthermore, rumen microbiota were functionally enriched in relation to transporters, ABC transporters, ribosome, and urine metabolism, and also significantly altered in HH and LL yaks. Conclusion: We observed significant differences in the composition, diversity, fermentation product concentrations, and function of ruminal microorganisms between yaks with high and low milk protein yields, suggesting the potential influence of rumen microbiota on milk protein yield in yaks. A deeper understanding of this process may allow future modulation of the rumen microbiome for improved agricultural yield through bacterial community design.

Characterization of Vaginal Microbiota Associated with Pregnancy Outcomes of Artificial Insemination in Dairy Cows

  • Chen, Shi-Yi;Deng, Feilong;Zhang, Ming;Jia, Xianbo;Lai, Song-Jia
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권6호
    • /
    • pp.804-810
    • /
    • 2020
  • The profitability of the dairy and beef industries is largely affected by the actually achieved reproductive efficiency. Although a large proportion of cows worldwide are bred by artificial insemination (AI) services, many potential factors affecting the outcome of pregnancy by AI remain to be addressed. In the present study, we investigated the vaginal microbiota by high-throughput sequencing of 16S rRNA gene and analyzed their association with differential pregnancy outcomes (i.e., pregnant vs. nonpregnant) of multiple AI services in dairy cows. Sequencing of the V3-V4 region totally produced 512,046 high-quality sequences that were computationally clustered into 2,584 operational taxonomic units (OTUs). All OTUs were taxonomically assigned to 10 bacterial phyla. There were statistically significant differences among the three AI service times (T1, T2 and T3) with respect to the Shannon index and number of observed OTUs (p < 0.05). Bray-Curtis distance-based PCoA analysis also revealed that T2 group could be significantly distinguished from T1 and T3. However, no significant difference between the pregnant and nonpregnant cows was found in confidence regarding both alpha diversity and beta diversity. These results could help us better understand the possible influence of vaginal microbial community on pregnancy outcomes of AI service in cows.

기계학습 접근법에 기반한 유전자 선택 방법들에 대한 리뷰 (A review of gene selection methods based on machine learning approaches)

  • 이하정;김재직
    • 응용통계연구
    • /
    • 제35권5호
    • /
    • pp.667-684
    • /
    • 2022
  • 유전자 발현 데이터는 각 유전자에 대해 mRNA 양의 정도를 나타내고, 그러한 유전자 발현량에 대한 분석은 질병 발생에 대한 메커니즘을 이해하고 새로운 치료제와 치료 방법을 개발하는데 중요한 아이디어를 제공해오고 있다. 오늘날 DNA 마이크로어레이와 RNA-시퀀싱과 같은 고출력 기술은 수천 개의 유전자 발현량을 동시에 측정하는 것을 가능하게 하여 고차원성이라는 유전자 발현 데이터의 특징을 발생시켰다. 이러한 고차원성으로 인해 유전자 발현 데이터를 분석하기 위한 학습 모형들은 과적합 문제에 부딪히기 쉽고, 이를 해결하기 위해 차원 축소 또는 변수 선택 기술들이 사전 분석 단계로써 보통 사용된다. 특히, 사전 분석 단계에서 우리는 유전자 선택법을 이용하여 부적절하거나 중복된 유전자를 제거할 수 있고 중요한 유전자를 찾아낼 수도 있다. 현재까지 다양한 유전자 선택 방법들이 기계학습의 맥락에서 개발되어왔다. 본 논문에서는 기계학습 접근법을 사용하는 최근의 유전자 선택 방법들을 집중적으로 살펴보고자 한다. 또한, 현재까지 개발된 유전자 선택 방법들의 근본적인 문제점과 앞으로의 연구 방향에 대해 논의하고자 한다.

Small RNA Transcriptome of Hibiscus Syriacus Provides Insights into the Potential Influence of microRNAs in Flower Development and Terpene Synthesis

  • Kim, Taewook;Park, June Hyun;Lee, Sang-gil;Kim, Soyoung;Kim, Jihyun;Lee, Jungho;Shin, Chanseok
    • Molecules and Cells
    • /
    • 제40권8호
    • /
    • pp.587-597
    • /
    • 2017
  • MicroRNAs (miRNAs) are essential small RNA molecules that regulate the expression of target mRNAs in plants and animals. Here, we aimed to identify miRNAs and their putative targets in Hibiscus syriacus, the national flower of South Korea. We employed high-throughput sequencing of small RNAs obtained from four different tissues (i.e., leaf, root, flower, and ovary) and identified 33 conserved and 30 novel miRNA families, many of which showed differential tissuespecific expressions. In addition, we computationally predicted novel targets of miRNAs and validated some of them using 5' rapid amplification of cDNA ends analysis. One of the validated novel targets of miR477 was a terpene synthase, the primary gene involved in the formation of disease-resistant terpene metabolites such as sterols and phytoalexins. In addition, a predicted target of conserved miRNAs, miR396, is SHORT VEGETATIVE PHASE, which is involved in flower initiation and is duplicated in H. syriacus. Collectively, this study provides the first reliable draft of the H. syriacus miRNA transcriptome that should constitute a basis for understanding the biological roles of miRNAs in H. syriacus.

Analysis of miRNA expression in the trachea of Ri chicken infected with the highly pathogenic avian influenza H5N1 virus

  • Suyeon Kang;Thi Hao Vu;Jubi Heo;Chaeeun Kim;Hyun S. Lillehoj;Yeong Ho Hong
    • Journal of Veterinary Science
    • /
    • 제24권5호
    • /
    • pp.73.1-73.16
    • /
    • 2023
  • Background: Highly pathogenic avian influenza virus (HPAIV) is considered a global threat to both human health and the poultry industry. MicroRNAs (miRNA) can modulate the immune system by affecting gene expression patterns in HPAIV-infected chickens. Objectives: To gain further insights into the role of miRNAs in immune responses against H5N1 infection, as well as the development of strategies for breeding disease-resistant chickens, we characterized miRNA expression patterns in tracheal tissues from H5N1-infected Ri chickens. Methods: miRNAs expression was analyzed from two H5N1-infected Ri chicken lines using small RNA sequencing. The target genes of differentially expressed (DE) miRNAs were predicted using miRDB. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were then conducted. Furthermore, using quantitative real-time polymerase chain reaction, we validated the expression levels of DE miRNAs (miR-22-3p, miR-146b-3p, miR27b-3p, miR-128-3p, miR-2188-5p, miR-451, miR-205a, miR-203a, miR-21-3p, and miR-200a3p) from all comparisons and their immune-related target genes. Results: A total of 53 miRNAs were significantly expressed in the infection samples of the resistant compared to the susceptible line. Network analyses between the DE miRNAs and target genes revealed that DE miRNAs may regulate the expression of target genes involved in the transforming growth factor-beta, mitogen-activated protein kinase, and Toll-like receptor signaling pathways, all of which are related to influenza A virus progression. Conclusions: Collectively, our results provided novel insights into the miRNA expression patterns of tracheal tissues from H5N1-infected Ri chickens. More importantly, our findings offer insights into the relationship between miRNA and immune-related target genes and the role of miRNA in HPAIV infections in chickens.

옥시페탈룸에서 발생한 토마토반점위조바이러스 국내 첫 보고 (First Report of Tomato Spotted Wilt Virus in Oxypetalum coeruleum in Korea)

  • 백이슬;;윤주연
    • 식물병연구
    • /
    • 제28권4호
    • /
    • pp.231-236
    • /
    • 2022
  • 2021년 5월 전북 김제시 화훼류 시설재배 농가에서 재배중인 옥시페탈룸(Oxypetalum coeruleum)에서 원형괴사 반점등의 전형적인 바이러스 감염 증상을 보이는 잎을 발견하였다. 이상 증상을 보이는 옥시페탈룸에서 원인 바이러스를 동정하기 위해 high-throughput sequencing을 수행한 결과 tomato spotted wilt virus (TSWV)에 의한 단독 감염이 확인되었다. TSWV의 감염을 확인하기 위해 TSWV 특이적인 프라이머를 이용하여 reverse transcription polymerase chain reaction (RT-PCR) 진단을 수행한 결과 777 bp의 예상 사이즈의 polymerase chain reaction 산물이 검출되었으며, TSWV의 기주인 청양고추(Capsicum annuum cv. 'Cheongyang')에 접종한 결과 TSWV의 전형적인 윤문무늬가 관찰되었으며 RT-PCR 진단법으로 고추에 감염된 TSWV를 확인할 수 있었다. 옥시페탈룸에서 분리한 TSWV (TSWV-Oxy)의 전체 염기서열을 결정하였으며, 기 보고된 13종 TSWV 분리주들의 S, M, L 유전체 염기서열과 상동성을 비교하였다. 'Oxy' 분리주는 국내 거베라에서 분리된 'Gumi' 분리주(MW048590, MW048591, MW048592)와 가장 상동성이 높았으며, 계통학적 연관성을 비교 분석한 결과 거베라 분리주 'Gumi' 및 고추 분리주인 'GS' (MF159043)와 'GC' (MF159066)와 가장 유연관계가 높은 것으로 확인되었다. 옥시페탈룸은 줄기삽목 혹은 종자로 증식되는 작물로서 시설재배지에서 연속적으로 재배되는 작물이다. TSWV는 총채벌레에 의해 잡초 등 TSWV 감염주로부터 시설 재배지로 유입되어 발생되었을 것으로 판단된다. 옥시페탈룸은 TSWV의 기주 중 하나로 보고되었으나 전 세계적으로 발생 및 증상에 관한 연구는 보고된 바 없다. 본 연구는 우리나라에서 옥시페탈룸에서 TSWV 발생에 관한 최초의 보고이다.

Construction of a Transcriptome-Driven Network at the Early Stage of Infection with Influenza A H1N1 in Human Lung Alveolar Epithelial Cells

  • Chung, Myungguen;Cho, Soo Young;Lee, Young Seek
    • Biomolecules & Therapeutics
    • /
    • 제26권3호
    • /
    • pp.290-297
    • /
    • 2018
  • We aimed to understand the molecular changes in host cells that accompany infection by the seasonal influenza A H1N1 virus because the initial response rapidly changes owing to the fact that the virus has a robust initial propagation phase. Human epithelial alveolar A549 cells were infected and total RNA was extracted at 30 min, 1 h, 2 h, 4 h, 8 h, 24 h, and 48 h post infection (h.p.i.). The differentially expressed host genes were clustered into two distinct sets of genes as the infection progressed over time. The patterns of expression were significantly different at the early stages of infection. One of the responses showed roles similar to those associated with the enrichment gene sets to known 'gp120 pathway in HIV.' This gene set contains genes known to play roles in preventing the progress of apoptosis, which infected cells undergo as a response to viral infection. The other gene set showed enrichment of 'Drug Metabolism Enzymes (DMEs).' The identification of two distinct gene sets indicates that the virus regulates the cell's mechanisms to create a favorable environment for its stable replication and protection of gene metabolites within 8 h.

Relative Effect of Glyphosate on Glyphosate-Tolerant Maize Rhizobacterial Communities is Not Altered by Soil Properties

  • Barriuso, Jorge;Mellado, Rafael P.
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권2호
    • /
    • pp.159-165
    • /
    • 2012
  • The rhizobacterial composition varies according to the soil properties. To test if the effect of herbicides on the rhizobacterial communities of genetically modified NK603 glyphosate-tolerant maize varies according to different soil locations, a comparison was made between the effects of glyphosate (Roundup Plus), a post-emergence applied herbicide, and a pre-emergence applied herbicide (GTZ) versus untreated soil. The potential effect was monitored by direct amplification, cloning, and sequencing of the soil DNA encoding 16S rRNA, and high-throughput DNA pyrosequencing of the bacterial DNA coding for the 16S rRNA hypervariable V6 region. The results obtained using three different methods to analyze the herbicide effect on the rhizobacterial communities of genetically modified NK603 maize were comparable to those previously obtained when glyphosate-tolerant maize was grown in soil with different characteristics. Both herbicides decreased the bacterial diversity in the rhizosphere, with Actinobacteria being the taxonomic group most affected. The results suggest that both herbicides affected the structure of the maize rhizobacterial community, but glyphosate was environmentally less aggressive.

Genomic and Proteomic Analysis of Microbial Function in the Gastrointestinal Tract of Ruminants - Review -

  • White, Bryan A.;Morrison, Mark
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권6호
    • /
    • pp.880-884
    • /
    • 2001
  • Rumen microbiology research has undergone several evolutionary steps: the isolation and nutritional characterization of readily cultivated microbes; followed by the cloning and sequence analysis of individual genes relevant to key digestive processes; through to the use of small subunit ribosomal RNA (SSU rRNA) sequences for a cultivation-independent examination of microbial diversity. Our knowledge of rumen microbiology has expanded as a result, but the translation of this information into productive alterations of ruminal function has been rather limited. For instance, the cloning and characterization of cellulase genes in Escherichia coli has yielded some valuable information about this complex enzyme system in ruminal bacteria. SSU rRNA analyses have also confirmed that a considerable amount of the microbial diversity in the rumen is not represented in existing culture collections. However, we still have little idea of whether the key, and potentially rate-limiting, gene products and (or) microbial interactions have been identified. Technologies allowing high throughput nucleotide and protein sequence analysis have led to the emergence of two new fields of investigation, genomics and proteomics. Both disciplines can be further subdivided into functional and comparative lines of investigation. The massive accumulation of microbial DNA and protein sequence data, including complete genome sequences, is revolutionizing the way we examine microbial physiology and diversity. We describe here some examples of our use of genomics- and proteomics-based methods, to analyze the cellulase system of Ruminococcus flavefaciens FD-1 and explore the genome of Ruminococcus albus 8. At Illinois, we are using bacterial artificial chromosome (BAC) vectors to create libraries containing large (>75 kbases), contiguous segments of DNA from R. flavefaciens FD-1. Considering that every bacterium is not a candidate for whole genome sequencing, BAC libraries offer an attractive, alternative method to perform physical and functional analyses of a bacterium's genome. Our first plan is to use these BAC clones to determine whether or not cellulases and accessory genes in R. flavefaciens exist in clusters of orthologous genes (COGs). Proteomics is also being used to complement the BAC library/DNA sequencing approach. Proteins differentially expressed in response to carbon source are being identified by 2-D SDS-PAGE, followed by in-gel-digests and peptide mass mapping by MALDI-TOF Mass Spectrometry, as well as peptide sequencing by Edman degradation. At Ohio State, we have used a combination of functional proteomics, mutational analysis and differential display RT-PCR to obtain evidence suggesting that in addition to a cellulosome-like mechanism, R. albus 8 possesses other mechanisms for adhesion to plant surfaces. Genome walking on either side of these differentially expressed transcripts has also resulted in two interesting observations: i) a relatively large number of genes with no matches in the current databases and; ii) the identification of genes with a high level of sequence identity to those identified, until now, in the archaebacteria. Genomics and proteomics will also accelerate our understanding of microbial interactions, and allow a greater degree of in situ analyses in the future. The challenge is to utilize genomics and proteomics to improve our fundamental understanding of microbial physiology, diversity and ecology, and overcome constraints to ruminal function.