References
- Afzal, A.J., Wood, A.J., and Lightfoot, D.A. (2008). Plant receptorlike serine threonine kinases: roles in signaling and plant defense. Mol. Plant-Microbe Int. 21, 507-517. https://doi.org/10.1094/MPMI-21-5-0507
- Aukerman, M.J., and Sakai, H. (2003). Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15, 2730-2741. https://doi.org/10.1105/tpc.016238
- Barkan, A., and Small, I. (2014). Pentatricopeptide repeat proteins in plants. Annu. Rev. Plant Biol. 65, 415-442. https://doi.org/10.1146/annurev-arplant-050213-040159
- Boualem, A., Laporte, P., Jovanovic, M., Laffont, C., Plet, J., Combier, J.-P., Niebel, A., Crespi, M., and Frugier, F. (2008). MicroRNA166 controls root and nodule development in Medicago truncatula. Plant J. 54, 876-887. https://doi.org/10.1111/j.1365-313X.2008.03448.x
- Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T.L. (2009). BLAST+: architecture and applications. BMC Bioinformatics 10, 421-421. https://doi.org/10.1186/1471-2105-10-421
- Casadevall, R., Rodriguez, R.E., Debernardi, J.M., Palatnik, J.F., and Casati, P. (2013). Repression of growth regulating factors by the MicroRNA396 inhibits cell proliferation by UV-B radiation in arabidopsis leaves. Plant Cell 25, 3570-3583. https://doi.org/10.1105/tpc.113.117473
- Cuperus, J.T., Fahlgren, N., and Carrington, J.C. (2011). Evolution and functional diversification of MIRNA cenes. Plant Cell 23, 431-442. https://doi.org/10.1105/tpc.110.082784
- Dai, X., and Zhao, P.X. (2011). psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res. 39, W155-W159. https://doi.org/10.1093/nar/gkr319
- Gutierrez, L., Bussell, J.D., Păcurar, D.I., Schwambach, J., Păcurar, M., and Bellini, C. (2009). Phenotypic plasticity of adventitious rooting in arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 21, 3119-3132. https://doi.org/10.1105/tpc.108.064758
- Hwang, D.-G., Park, J.H., Lim, J.Y., Kim, D., Choi, Y., Kim, S., Reeves, G., Yeom, S.-I., Lee, J.-S., Park, M., et al. (2013). The Hot Pepper (Capsicum annuum) MicroRNA Transcriptome reveals novel and conserved targets: a foundation for understanding microRNA functional roles in hot pepper. Plos One 8, e64238. https://doi.org/10.1371/journal.pone.0064238
- Kim, J., Jung, J.-H., Reyes, J.L., Kim, Y.-S., Kim, S.-Y., Chung, K.-S., Kim, J.A., Lee, M., Lee, Y., Narry Kim, V., et al. (2005). microRNAdirected cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J. 42, 84-94. https://doi.org/10.1111/j.1365-313X.2005.02354.x
- Kim, J., Park, J.H., Lim, C.J., Lim, J.Y., Ryu, J.-Y., Lee, B.-W., Choi, J.-P., Kim, W.B., Lee, H.Y., Choi, Y., et al. (2012). Small RNA and transcriptome deep sequencing proffers insight into floral gene regulation in Rosa cultivars. BMC Genomics 13, 657. https://doi.org/10.1186/1471-2164-13-657
- Kim, Y.-M., Kim, S., Koo, N., Shin, A.-Y., Yeom, S.-I., Seo, E., Park, S.- J., Kang, W.-H., Kim, M.-S., Park, J., et al. (2017). Genome analysis of Hibiscus syriacus provides insights of polyploidization and indeterminate flowering in woody plants. DNA Res. 24, 71-80.
- Koyama, T., Furutani, M., Tasaka, M., and Ohme-Takagi, M. (2007). TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in arabidopsis. Plant Cell 19, 473-484. https://doi.org/10.1105/tpc.106.044792
- Kozomara, A., and Griffiths-Jones, S. (2014). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68-D73. https://doi.org/10.1093/nar/gkt1181
- Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25. https://doi.org/10.1186/gb-2009-10-3-r25
- Lee, J.H., Yoo, S.J., Park, S.H., Hwang, I., Lee, J.S., and Ahn, J.H. (2007). Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev. 21, 397-402. https://doi.org/10.1101/gad.1518407
- Li, Y., Zhang, Q., Zhang, J., Wu, L., Qi, Y., and Zhou, J.-M. (2010). Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol. 152, 2222-2231. https://doi.org/10.1104/pp.109.151803
- Meyers, B.C., Axtell, M.J., Bartel, B., Bartel, D.P., Baulcombe, D., Bowman, J.L., Cao, X., Carrington, J.C., Chen, X., and Green, P.J. (2008). Criteria for annotation of plant MicroRNAs. Plant Cell 20, 3186-3190. https://doi.org/10.1105/tpc.108.064311
- Moxon, S., Jing, R., Szittya, G., Schwach, F., Rusholme Pilcher, R.L., Moulton, V., and Dalmay, T. (2008). Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res. 18, 1602-1609. https://doi.org/10.1101/gr.080127.108
- Nag, A., King, S., and Jack, T. (2009). miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc. Natl. Acad. Sci. USA 106, 22534-22539. https://doi.org/10.1073/pnas.0908718106
- Nozawa, M., Miura, S., and Nei, M. (2012). Origins and evolution of microRNA genes in plant species. Genome Biol. Evol. 4, 230-239. https://doi.org/10.1093/gbe/evs002
- Pantaleo, V., Szittya, G., Moxon, S., Miozzi, L., Moulton, V., Dalmay, T., and Burgyan, J. (2010). Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J. 62, 960-976.
- Park, J.H., and Shin, C. (2014). MicroRNA-directed cleavage of targets: mechanism and experimental approaches. BMB Rep. 47, 417-423. https://doi.org/10.5483/BMBRep.2014.47.8.109
- Park, J.H., and Shin, C. (2015). The role of plant small RNAs in NBLRR regulation. Brief. Func. Genomics. 14, 268-274. https://doi.org/10.1093/bfgp/elv006
- Peng, J., Xia, Z., Chen, L., Shi, M., Pu, J., Guo, J., and Fan, Z. (2014). Rapid and Efficient Isolation of High-Quality Small RNAs from Recalcitrant Plant Species Rich in Polyphenols and Polysaccharides. Plos One 9, e95687. https://doi.org/10.1371/journal.pone.0095687
- Rodriguez, R.E., Mecchia, M.A., Debernardi, J.M., Schommer, C., Weigel, D., and Palatnik, J.F. (2010). Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137, 103-112. https://doi.org/10.1242/dev.043067
- Rogers, K., and Chen, X. (2013). Biogenesis, Turnover, and mode of action of plant microRNAs. Plant Cell Online.
- Rubio-Somoza, I., and Weigel, D. (2013). Coordination of flower maturation by a regulatory circuit of three microRNAs. PLoS Genet. 9, e1003374. https://doi.org/10.1371/journal.pgen.1003374
- Si-Ammour, A., Windels, D., Arn-Bouldoires, E., Kutter, C., Ailhas, J., Meins, F., and Vazquez, F. (2011). miR393 and secondary siRNAs regulate expression of the TIR1/AFB2 auxin receptor clade and auxinrelated development of Arabidopsis leaves. Plant Physiol. 157, 683-691. https://doi.org/10.1104/pp.111.180083
- Trotta, E. (2014). On the normalization of the minimum free energy of RNAs by sequence length. Plos One 9, e113380. https://doi.org/10.1371/journal.pone.0113380
- Vidal, E.A., Araus, V., Lu, C., Parry, G., Green, P.J., Coruzzi, G.M., and Gutierrez, R.A. (2010). Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 107, 4477-4482. https://doi.org/10.1073/pnas.0909571107
- Voinnet, O. (2009). Origin, biogenesis, and activity of plant microRNAs. Cell 136, 669-687. https://doi.org/10.1016/j.cell.2009.01.046
- Wang, K., Senthil-Kumar, M., Ryu, C.-M., Kang, L., and Mysore, K.S. (2012). Phytosterols play a key role in plant innate immunity against bacterial pathogens by regulating nutrient efflux into the apoplast. Plant Physiol. 158, 1789-1802. https://doi.org/10.1104/pp.111.189217
- Williams, L., Grigg, S.P., Xie, M., Christensen, S., and Fletcher, J.C. (2005). Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development 132, 3657-3668. https://doi.org/10.1242/dev.01942
- Wu, G., Park, M.Y., Conway, S.R., Wang, J.-W., Weigel, D., and Poethig, R.S. (2009). The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138, 750-759. https://doi.org/10.1016/j.cell.2009.06.031
- Wu, M.-F., Tian, Q., and Reed, J.W. (2006). Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133, 4211-4218. https://doi.org/10.1242/dev.02602
- Yang, C.-Y., Huang, Y.-H., Lin, C.-P., Lin, Y.-Y., Hsu, H.-C., Wang, C.-N., Liu, L.-Y.D., Shen, B.-N., and Lin, S.-S. (2015). MicroRNA396-targeted SHORT VEGETATIVE PHASE is required to repress flowering and is related to the development of abnormal flower symptoms by the phyllody symptoms1 effector. Plant Physiol. 168, 1702-1716. https://doi.org/10.1104/pp.15.00307
- Yu, N., Niu, Q.-W., Ng, K.-H., and Chua, N.-H. (2015). The role of miR156/SPLs modules in Arabidopsis lateral root development. Plant J. 83, 673-685. https://doi.org/10.1111/tpj.12919
- Zhang, W., Gao, S., Zhou, X., Xia, J., Chellappan, P., Zhou, X., Zhang, X., and Jin, H. (2010). Multiple distinct small RNAs originate from the same microRNA precursors. Genome Biol. 11, R81-R81. https://doi.org/10.1186/gb-2010-11-8-r81
- Zhou, M., Li, D., Li, Z., Hu, Q., Yang, C., Zhu, L., and Luo, H. (2013). Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol. 161, 1375-1391. https://doi.org/10.1104/pp.112.208702
- Zhu, Q.-H., and Helliwell, C.A. (2011). Regulation of flowering time and floral patterning by miR172. J. Exp. Bot. 62, 487-495. https://doi.org/10.1093/jxb/erq295
Cited by
- Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies vol.19, pp.1, 2018, https://doi.org/10.1186/s12864-018-4897-1
- Comparative profile analysis reveals differentially expressed microRNAs regulate anther and pollen development in kenaf cytoplasmic male sterility line vol.62, pp.7, 2019, https://doi.org/10.1139/gen-2018-0207