• Title/Summary/Keyword: high-temperature superconductor

Search Result 390, Processing Time 0.025 seconds

Fabrication of a large grain YBCO bulk superconductor by homo-seeding melt growth method

  • Lee, Hee-Gyoun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.35-40
    • /
    • 2022
  • To fabricate large grain YBCO bulk superconductors by melt process, Sm123 single crystal with a high melting point are mostly used as seeds. However, it also uses Y123 film deposited on MgO single crystal substrate. This study investigated the growth behavior of the Y123 grain during a melt process when single grain YBCO bulk was used as a seed. Single grain Y123 bulk was grown when the seed size was small. When the seed size was relatively large, multiple grains were grown but the grains were still large. Y123 seed crystal was completely decomposed during high temperature anneal at 1040℃ and new Y123 crystals were nucleated during a slow cooling stage below a peritectic temperature. Thereafter, newly formed Y123 crystals from the seed area are thought to grow into the Y1.8 powder compact. The crystallographic orientations of newly nucleated Y123 grains are independent of the crystallographic orientation of Y123 seed. It is thought that the crystallographic orientation of newly nucleated Y123 crystal can be controlled by using Y211-free Y123 single crystal as a seed of homo-seeding melt growth.

Characteristic analysis of components of a high temperature superconducting power supply using YBCO coated conductor (YBCO CC을 사용한 초전도전원장치의 요소특성 해석)

  • Yoon, Yong-Soo;Cho, Dae-Ho;Park, Dong-Kuen;Yang, Seong-Eun;Kim, Ho-Min;Chung, Yoon-Do;Bae, Duck-Kwon;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.40-45
    • /
    • 2009
  • Many superconductor applications such as MRI and SMES must be operated in persistent current mode to eliminate the electrical ohmic loss. This paper presents the characteristic analysis of the high temperature superconducting (HTS) power supply made of YBCO coated conductor (CC). In this research, we have manufactured the HTS power supply to charge the 0.73 mH HTS double-pancake magnet made of YBCO CC. Among the all design parameters, the heater triggerring time and magnet applying time were the most important factors for the best performance of the HTS power supply. In this paper, three-dimensional simulation through finite element method (FEM) was used to study the heat transfer in YBCO CC and the magnetic field of the magnetic circuit. Based upon these results, the final operational sequence could be determined to generate the pumping current. In the experiment, the maximum pumping current reached about 16 A.

Design of an Air-Core HTS quadruple triplet for a heavy ion accelerator

  • Zhang, Zhan;Wei, Shaoqing;Lee, Sangjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.35-39
    • /
    • 2016
  • In recent years, high-temperature superconductor (HTS) Quadruple Triplets are being developed for heavy ion accelerators, because the HTS magnets are suitable to withstand radiation and high heat loads in the hot cell of accelerators. Generally, an iron yoke, which costs a mass of material, was employed to enhance the magnetic field when a quadrupole magnet was designed. The type of the magnet is called iron-dominated magnet, because the total magnetic field was mainly induced by the iron. However, in the HTS superconductor iron-dominated magnets, the coil-induced field also can have a certain proportion. Therefore, the air-core HTS quadrupole magnets can be considered instead of the iron-core HTS quadrupole magnet to be employed to save the iron material. This study presents the design of an air-core HTS quadruple triplet which consists three by air-core HTS quadruple magnet and compare the design result with that of an iron-core HTS quadruple triplet. First, the characteristics of an air-core HTS quadrupole magnet were analyzed to select the magnet system for the magnetic field uniformity impairment. Then, the field uniformity was improved(< 0.1%) exactly using evolution strategy (ES) method for each iron-core HTS quadrupole magnet and the air-core HTS quadruple triplet was established. Finally, the designed air-core triplet was compared with the iron-core HTS quadruple triplet, and the results of beam trajectories were presented with both the HTS quadruple triplet systems to show that the air-core triplet can be employed instead of the iron-core HTS triplet. The design of the air-core quadruple triplet was suggested for a heavy ion accelerator.

Heat Liberation in the Reaction of $YBa_2Cu_3O_{7-}\delta$, $Y_2BaCuO_5$, and Binary Compounds in the Ba-Cu-O System with Water ($YBa_2Cu_3O_{7-}\delta$, $Y_2BaCuO_5$ 및 Ba-Cu-O계 화합물의 수분과의 반응에 의한 열방출에 관한 연구)

  • 김배연
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.83-89
    • /
    • 1995
  • YBa2Cu3O7-$\delta$, Y2BaCuO5, and binary compounds in the Ba-Cu-O system with the nominal composition of Ba2CuO3, BaCuO2, Ba3Cu4O7, Ba3Cu5O8 were synthesized to investigate the heat evolutions and crystalline phases in the hydration reaction of orthorhombic YBa2Cu3O7-$\delta$ phase. The observed crystalline phases were YBa2Cu3O7-$\delta$, Y2BaCuO5, and BaCuO2, or Ba2Cu3O5+x, and some amount of noncrystalline phase in the Ba-Cu system comounds. In contact with distilled water, YBa2Cu3O7-$\delta$ and Y2BaCuO5 did not have considerable heat liberation, but in the binary compounds of the Ba-Cu-O system, the amount of total heat liberation was increased with respect to the Cu content. It might be that the reaction of high temperature superconductor YBa2Cu3O7-$\delta$ with water and/or moisture originated from the unusual oxidation state of Cu ion and the presence of amorphous Ba-Cu oxide compound. The degradation of high Tc superconductor by moisture and water could be controlled by restricting the heterogeneous distribution of Tc comlposition and the formation of second phase, such as stable Y2BaCuO5, and the resulting unstable Ba-Cu oxide compound.

  • PDF

Comparative Study for the Unloaded Quality Factors of High-Tc Superconductor-Dielectric Resonators Measured by Using S-parameter Circle-fit Method and Lorentzian-fit Method (S-parameter circle fit 방법과 Lorentzian fit 방법으로 측정된 고온초전도 유전체 공진기의 Unloaded Quality Factor 비교)

  • Kim, M.J.;Lee, J.H.;Park, E.K.;Yang, W.I.;Jung, H.S.;Choi, Y.O.;Lee, S.Y.
    • Progress in Superconductivity
    • /
    • v.8 no.2
    • /
    • pp.143-151
    • /
    • 2007
  • Accurate measurements of the microwave surface resistance (Rs) of high temperature superconductor (HTS) films are important with regard to applications of HTS materials for wireless communications. As the surface resistance values of HTS films are usually extracted from the measured unloaded quality factor ($Q_0$) of resonators made of HTS films, it is essential to measure the resonator $Q_0$ with accuracy. The $TE_{011}\;mode\;Q_0$ of sapphire resonators with the endplates made of $YBa_2Cu_3O_{7-{\delta}}$(YBCO) film on $LaAlO_3$ is measured by using the S-parameter circle-fit method at a frequency of about 19.6 GHz and temperatures of 30 K to 90 K, which is compared with the measured values by using the Lorentzian-fit method. Good agreements are found between the two sets of $Q_0$ values measured by using the two different methods whether the resonator is used in a weak-coupling scheme or a strong-coupling scheme, showing reliability of both methods fur measuring the resonator $Q_0$ accurately. The $Q_0$ of sapphire resonators with a gap between the top plate and the rest of the resonator is also discussed.

  • PDF

A Comparative Study on the Effective Surface Resistance of High-$T_c$ Superconductor Films as Measured by Using the S-parameter Circle-fit and the Lorentzian-fit Methods (S-parameter Circle-fit과 Lorentzian-fit 방법으로 측정된 고온초전도체 박막의 유효표면저항 비교)

  • Kim, Min-Jeong;Jung, Ho-Sang;Lee, J.H.;Lee, Sang-Young
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.146-151
    • /
    • 2008
  • Measurements of surface resistance ($R_s$) of high temperature superconductor (HTS) films with accuracy are essential for microwave applications of HTS materials. In using the dielectric resonator method, uncertainties in the unloaded quality factor of the resonator cause significant errors in the measured $R_s$ of HTS films. We compare the Rs values of $YBa_2Cu_3O_{7-{\delta}}$ films calculated from the $Q_0$ as determined from the Lorentzian fit with that from the $Q_0$ as determined from the S-parameter circle-fit at temperatures between 15 K and 77 K. The two sets of values appeared to differ by 5%, 7%, 6%, and 11% at temperatures of 15, 60, 70, and 77 K, respectively, from each other, implying that careful error analysis needs to be performed in obtaining the $R_s$ of HTS films by using the Lorentzian-fit method, with the ones determined from the S-parameter circle-fit used as the reference.

  • PDF

Development and Test of a Cooling System for a 154 kV Superconducting Fault Current Limiter

  • Kim, Heesun;Han, Young Hee;Yang, Seong-Eun;Yu, Seung-Duck;Park, Byung Jun;Park, Kijun;Yoo, Jaeun;Kim, Hye-Rim;In, Sehwan;Hong, Yong Joo;Yeom, Hankil
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.141-144
    • /
    • 2015
  • The superconducting fault current limiter (SFCL) is an electric power device that limits the fault current immediately in a power grid. Korea Electric Power Corporation (KEPCO) has been developing a 154 kV, 2 kA SFCL since 2011 to protect power grids from increasing fault current and improve the stability and quality of electric power. This SFCL adopts 2G YBCO wires and operates at 71 K and 5 bars. In this paper, a cooling system for the 154 kV SFCL and its cooling test results are reported. This cooling system uses a Stirling-type cooler to make sub-cooled liquid nitrogen ($LN_2$), which cools the superconductor modules of the SFCL. The $LN_2$ is circulated between the cooler and the cryostat that contains superconductor modules. The $LN_2$ also plays the role of a high voltage insulator between the modules and the cryostat, so the pressure was maintained at 5 bars for high insulation performance. After installation in a test site, the cooling characteristics of the system were tested. In this operation test, some important data were measured such as temperature distribution in $LN_2$, pressure change, performance of the heat exchanger, and cooling capacity of the total system. Consequently, the results indicate that the cooling system operates well as designed.

Effects of a compaction method for powder compacts on the critical current density of MgB2 bulk superconductors

  • Kang, M.O.;Joo, J.;Jun, B.H.;Choo, K.N.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.40-44
    • /
    • 2019
  • In this study, the effects of the compaction method for (Mg+2B) powders on the apparent density and superconducting properties of $MgB_2$ bulk superconductor were investigated. The raw powders used in this study were nano-sized boron (B) and spherical magnesium (Mg). A batch of a powder mixture of (Mg+2B) was put in a steel mold and uniaxially pressed at 1 ton or 3 tons into pellets. Another batch of the powder mixture was uniaxially pressed at 1 ton and then pressed isostatically at $1800kg/cm^2$ in the water chamber. All pellets were heat-treated at $650^{\circ}C$ for 1 h in flowing argon gas for the formation of $MgB_2$. The apparent density of powder compacts pressed at 3 ton was higher than that at 1 ton. The cold isostatic pressing (CIP) in a water chamber allowed further increase of the apparent density of powder compacts, which influenced the pellet density of the final products ($MgB_2$). The compaction methods (uniaxial pressing and CIP) did not affect the formation of $MgB_2$ and superconducting critical temperature ($T_c$) of $MgB_2$, but affected the critical current density ($J_c$) of $MgB_2$ significantly. The sample with the high apparent density showed high $J_c$ at 5 K and 20 K at applied magnetic fields (0-5 T).

Crystal growth and transport current properties of cylindrical (YSmNd)-Ba-Cu-O superconductors by zone melt growth method (존멜팅법을 이용한 원통형 (YSmNd)-Ba-Cu-O계 초전도체의 결정성장 및 수송 전류 특성)

  • Kim, So-Jung;Park, Jong-Kuk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.5
    • /
    • pp.199-204
    • /
    • 2011
  • $(YSmNd)_{1.8}Ba_{2.4}Cu_{3.4}O_{7-x}$ [(YSN)1.8] high $T_c$ superconductor was directionally grown by zone melt growth process, in air atmosphere. In this study, optimum melting temperature and growth rate were $1100^{\circ}C$ and 3.5 mm/hr, respectively. The microstructure of well-textured (YSN)1.8 samples were examined by XRD, optical microscopy, TEM and SQUID magnetometer. The critical current density of these samples were measured by the direct transporting current method. In the observation using an optical microscopy, nonsuperconducting $(YSmNd)_2BaCuO_5$[(YSN)211] inclusions of (YSN)1.8 superconductor uniformly distributed within the superconducting (YSmNd)$Ba_2Cu_3O_x$[(YSN)123] matrix. The directionally melt-textured (YSN)1.8 superconductor showed an onset $T_c{\geq}90\;K$ and sharp superconducting transition. The transport $J_c$ values were 830 A and $3.93{\times}10^4$ (A/$cm^2$) at 77 K self-field, respectively.

Parametric Study of AC Current Lead for the Termination of HTS Power Cable

  • Kim, D.L;Kim, S.H.;S. Cho;H.S. Yang;Kim, D.H.;H.S. Ryoo;K.C. Seong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.107-110
    • /
    • 2003
  • High Temperature Superconductor (HTS) transmission cable can carry more than 2 to 5 times higher electricity and also obtain substantially lower transmission losses than conventional cables. Liquid nitrogen is to be used to cool the HTS power cable and its cost is much cheaper than the liquid helium used for the cooling of metal superconducting wire. In Korea the HTS power cable development project has been ongoing since July, 2001 with the basic specifications of 22.9kV, 50MVA and told dielectric type as the first 3-year stage. The cryogenic system of the HTS cable is composed of HTS cable cryostat termination and refrigeration system. Termination of HTS cable is a connecting part between copper electrical cable at room temperature and HTS cable at liquid nitrogen temperature. In order to design the termination cryostat, it is required that the conduction heat leak and Joule heating on the current lead be reduced, the cryostat be insulated electrically and good vacuum insulation be maintained during long time operation. Heat loads calculations on the copper current lead have been performed by analytical and numerical method and the feasibility study fer the other candidate materials has also been executed.