DOI QR코드

DOI QR Code

Effects of a compaction method for powder compacts on the critical current density of MgB2 bulk superconductors

  • Kang, M.O. (Korea Atomic Energy Research Institute) ;
  • Joo, J. (Sungkyunkwan University) ;
  • Jun, B.H. (Korea Atomic Energy Research Institute) ;
  • Choo, K.N. (Korea Atomic Energy Research Institute) ;
  • Kim, C.J. (Korea Atomic Energy Research Institute)
  • Received : 2019.06.16
  • Accepted : 2019.06.21
  • Published : 2019.06.30

Abstract

In this study, the effects of the compaction method for (Mg+2B) powders on the apparent density and superconducting properties of $MgB_2$ bulk superconductor were investigated. The raw powders used in this study were nano-sized boron (B) and spherical magnesium (Mg). A batch of a powder mixture of (Mg+2B) was put in a steel mold and uniaxially pressed at 1 ton or 3 tons into pellets. Another batch of the powder mixture was uniaxially pressed at 1 ton and then pressed isostatically at $1800kg/cm^2$ in the water chamber. All pellets were heat-treated at $650^{\circ}C$ for 1 h in flowing argon gas for the formation of $MgB_2$. The apparent density of powder compacts pressed at 3 ton was higher than that at 1 ton. The cold isostatic pressing (CIP) in a water chamber allowed further increase of the apparent density of powder compacts, which influenced the pellet density of the final products ($MgB_2$). The compaction methods (uniaxial pressing and CIP) did not affect the formation of $MgB_2$ and superconducting critical temperature ($T_c$) of $MgB_2$, but affected the critical current density ($J_c$) of $MgB_2$ significantly. The sample with the high apparent density showed high $J_c$ at 5 K and 20 K at applied magnetic fields (0-5 T).

Keywords

CJJOCB_2019_v21n2_40_f0001.png 이미지

Fig. 1. FE-SEM images of (a) Mg and (b) B used as raw powders.

CJJOCB_2019_v21n2_40_f0002.png 이미지

Fig. 2. Schematic drawings of (a) uniaxial pressing and (b) cold isostatic pressing (CIP).

CJJOCB_2019_v21n2_40_f0003.png 이미지

Fig. 3. Volume change of pellets after uniaxial pressing, CIP and heat treatment.

CJJOCB_2019_v21n2_40_f0004.png 이미지

Fig. 4. Histogram of an apparent density before/after heat treatment as a function of the compaction condition.

CJJOCB_2019_v21n2_40_f0005.png 이미지

Fig. 5. Powder X-ray diffraction patterns of MgB2 prepared with various compaction methods.

CJJOCB_2019_v21n2_40_f0006.png 이미지

Fig. 6. Normalized M-T curves of MgB2 prepared with various compaction methods.

CJJOCB_2019_v21n2_40_f0007.png 이미지

Fig. 7. Jc-B curves at 5 K and 20 K of MgB2 prepared with various compaction methods.

TABLE I COMPACTION INFORMATION OF PELLETS.

CJJOCB_2019_v21n2_40_t0001.png 이미지

TABLE II APPARENT DENSITY AND VARIATION OF DENSITY CHANGE BEFORE/AFTER HEAT TREATMENT WITH VARIOUS COMPACTION CONDITIONS.

CJJOCB_2019_v21n2_40_t0002.png 이미지

TABLE III CRITICAL CURRENT DENSITY OF MGB2 AT 3 T, 5 K AND 20 K PREPARED WITH VARIOUS COMPACTION CONDITIONS.

CJJOCB_2019_v21n2_40_t0003.png 이미지

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, "Superconductivity at 39 K in magnesium diboride," Nature, vol. 410, pp. 63-64, 2001. https://doi.org/10.1038/35065039
  2. A. Yamamoto, J. Shimoyama, S. Ueda, Y. Katsura, S. Horii, K. Kishio, "Improved critical current properties observed in $MgB_2$ bulks synthesized by low-temperature solid-state reaction," Supercond. Sci. Technol., vol. 18, pp. 116-121, 2005. https://doi.org/10.1088/0953-2048/18/1/019
  3. D. K. Finnemore, J. E. Ostenson, S. L. Bud'ko, G. Lapertot, P. C. Canfield, "Thermodynamic and transport properties of superconducting $Mg^{10}B_2$," Phys. Rev. Lett., vol. 86, pp. 2420-2422, 2001. https://doi.org/10.1103/PhysRevLett.86.2420
  4. Y. Eltsev, S. Lee, K. Nakao, N. Chikumoto, S. Tajima, N. Koshizuka, M. Murakami, "Anisotropic superconducting properties of $MgB_2$ single crystals probed by in-plane electrical transport measurements," Phys. Rev. B., vol. 65, pp. 140501, 2002. https://doi.org/10.1103/PhysRevB.65.140501
  5. C. Buzea, T. Yamashita, "Review of superconducting properties of $MgB_2$," Supercond. Sci. Technol., vol. 14, pp. R115-R146, 2001. https://doi.org/10.1088/0953-2048/14/11/201
  6. K. Vinod, R. G. A. Kumar, U. Syamaprasad, "Prospects for $MgB_2$ superconductors for magnet application," Supercond. Sci. Technol., vol. 20, pp. R1-R13, 2007. https://doi.org/10.1088/0953-2048/20/1/R01
  7. J. H. Durrell, C. E. J. Dancer, A. Dennis, Y. Shi, Z. Xu, A. M. Campbell, N. H. Babu, R. I. Todd, C. R. M. Grovenor, D. A. Cardwell, "A trapped field of >3 T in bulk $MgB_2$ fabricated by uniaxial hot pressing," Supercond. Sci. Technol., vol. 25, pp. 112002, 2012. https://doi.org/10.1088/0953-2048/25/11/112002
  8. R. V. Viznichenko, A. A. Kordyuk, G. Fuchs, K. Nenkov, K.-H. Muller, T. A. Prikhna, W. Gawalek, "Temperature dependence of the trapped magnetic field in $MgB_2$ bulk superconductors," Appl. Phys. Lett., vol. 83, pp. 4360-4362, 2003. https://doi.org/10.1063/1.1629148
  9. M. Muralidhar, A. Ishihara, K. Suzuki, Y. Fukumoto, Y. Yamamoto, M. Tomita, " Optimization of the fabrication process for high trapped field $MgB_2$ bulks," Physica C, vol. 494, pp. 85-88, 2013. https://doi.org/10.1016/j.physc.2013.04.012
  10. M. Muralidhar, N. Kenta, M. R. Koblischka, M. Murakami, "High critical current densities in bulk $MgB_2$ fabricated using amorphous boron," Phys. Status Solidi A, vol. 212, no. 10, pp. 2141-2145, 2015. https://doi.org/10.1002/pssa.201532108
  11. Y. Zhao, M. Ionescu, J. Horvat, S. X. Dou, "Comparative study of in situ and ex situ $MgB_2$ films prepared by pulsed laser deposition," Supercond. Sci. Technol., vol. 17, pp. S482-S485, 2004. https://doi.org/10.1088/0953-2048/17/9/004
  12. A. V. Pan, S. Zhou, H. Liu, S. Dou, "Properties of superconducting $MgB_2$ wires: in situ versus ex situ reaction technique," Supercond. Sci. Technol., vol. 16, pp. 639-644, 2003. https://doi.org/10.1088/0953-2048/16/5/317
  13. C. F. Liu, G. Yan, S. J. Du, W. Xi, Y. Feng, P. X. Zhang, X. Z. Wu, L. Zhou, "Effect of heat-treatment temperatures on density and porosity in $MgB_2$ superconductor," Physica C, vol. 386, pp. 603-606, 2003. https://doi.org/10.1016/S0921-4534(02)02170-6
  14. M.Kambara, N. H. Babu, E. S. Sadki, J. R. cooper, H. Minami, D. A. Cardwell, A. M. Campbell, I. H. Inoue, "High intergranular critical currents in metallic $MgB_2$ superconductor," Supercond. Sci. Technol., vol. 14, pp. L5-L7, 2001. https://doi.org/10.1088/0953-2048/14/4/101
  15. A. Serquis, Y. T. Zhu, E. J. Peterson, J. Y. Coulter, D. E. Peterson, F. M. Mueller, "Effect of lattice strain and defects on the superconductivity of $MgB_2$," Appl. Phys. Lett., vol. 79, no. 26, pp. 4399-4401, 2001. https://doi.org/10.1063/1.1428109
  16. C. U. Jung, M.-S. Park, M.-S. Kim, J.-H. Choi, W. N. Kang, K. H. P. Kim, S.-I Lee, "High-pressure sintering of highly dense $MgB_2$ and its unique pinning propertes," Curr. Appl. Phys., vol. 1, pp. 327-331, 2001. https://doi.org/10.1016/S1567-1739(01)00031-1
  17. V. Braccini, D. Nardelli, R. Penco, G. Grasso, "Development of ex situ processed $MgB_2$ wires and their applications to magnets," Physica C, vol. 456, pp. 209-217, 2007. https://doi.org/10.1016/j.physc.2007.01.030
  18. A. Malagoli, V. Braccini, M. Tropeano, M. Vignolo, C. Bernini, C. Fanciulli, G. Romano, M. Putti, C. Ferdeghini, E. Mossang, A. Polyanskii, D. C. Larbalestier, "Effect of grain refinement on enhancing critical current density and upper critical field in undoped $MgB_2$ ex situ tapes," J. Appl. Phys., vol. 104, pp. 103908, 2008. https://doi.org/10.1063/1.3021468
  19. C. P. Bean, "Magnetization of high-field superconductors," Rev. Mod. Phys., pp. 31-39, 1964.
  20. J. H. Yi, K. T. Kim, B.-H. Jun, J. M. Sohn, B. G. Kim, J. Joo, C.-J. Kim, "Pore formation in in situ processed $MgB_2$ superconductors," Physica C, vol. 469, pp. 1192-1195, 2009. https://doi.org/10.1016/j.physc.2009.05.190
  21. D. N. Kim, M. O. Kang, B.-H. Jun, C.-J. Kim, H. W. Park, "Cryogenic milling for the fabrication of high $J_c$ $MgB_2$ bulk superconductors," Prog. Supercond. Cryo., Korea, vol. 19, no. 2, pp. 19-24, 2017.
  22. E. W. Collings, M. D. Sumption, M. Bhatia, M. A. Susner, S. D. Bohnenstiehl, "Prospects for improving the intrinsic and extrinsic properties of magnesium diboride superconducting strands," Supercond. Sci. Technol., vol. 21, pp. 103001, 2008. https://doi.org/10.1088/0953-2048/21/10/103001
  23. C.-J. Kim, H. G. Lee, D. Y. Won, H. S. Shin, "Expansion of BiSrCaCuO pellets," Mater. Sci. Eng., vol. B3, pp. 501-505, 1989.
  24. C.-J. Kim, S.-J. L. Kang, D.-Y. Won, "Compact swelling in $Bi_{1.4}Pb_{0.6}Sr_2Ca_2Cu_{3.6}O_y$ during the formation of high-$T_c$ superconducting phase," J. Am. Ceram. Soc., vol. 75, pp. 570-574, 1992. https://doi.org/10.1111/j.1151-2916.1992.tb07844.x