• Title/Summary/Keyword: high-temperature oxidation

Search Result 1,139, Processing Time 0.031 seconds

Differential Expression of Laccase Genes in Pleurotus ostreatus and Biochemical Characterization of Laccase Isozymes Produced in Pichia pastoris

  • Park, Minsa;Kim, Minseek;Kim, Sinil;Ha, Byeongsuk;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.280-287
    • /
    • 2015
  • In this study, transcriptome analysis of twelve laccase genes in Pleurotus ostreatus revealed that their expression was differentially regulated at different developmental stages. Lacc5 and Lacc12 were specifically expressed in fruiting bodies and primordia, respectively, whereas Lacc6 was expressed at all developmental stages. Lacc1 and Lacc3 were specific to the mycelial stage in solid medium. In order to investigate their biochemical characteristics, these laccases were heterologously expressed in Pichia pastoris using the pPICHOLI-2 expression vector. Expression of the laccases was facilitated by intermittent addition of methanol as an inducer and sole carbon source, in order to reduce the toxic effects associated with high methanol concentration. The highest expression was observed when the recombinant yeast cells were grown for 5 days at $15^{\circ}C$ with intermittent addition of 1% methanol at a 12-hr interval. Investigation of enzyme kinetics using 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) as a substrate revealed that the primordium-specific laccase Lacc12 was 5.4-fold less active than Lacc6 at low substrate concentration with respect to ABTS oxidation activity. The optimal pH and temperature of Lacc12 were 0.5 pH units and $5^{\circ}C$higher than those of Lacc6. Lacc12 showed maximal activity at pH 3.5 and $50^{\circ}C$, which may reflect the physiological conditions at the primordiation stage.

Pretreatment Condition of Cu by Ammonium-Based Mixed Solvent and Its Effects on the Fabrication of Ag-Coated Cu Particles (Ag 도금 Cu 입자의 제조에서 암모늄 기반 혼합 용매를 사용한 Cu 입자의 전처리 조건과 이의 영향)

  • Lee, Hee Bum;Lee, Jong-Hyun
    • Korean Journal of Materials Research
    • /
    • v.26 no.3
    • /
    • pp.109-116
    • /
    • 2016
  • To achieve the fabrication of high-quality Ag-coated Cu particles through a wet chemical process, we reported herein pretreatment conditions using an ammonium-based mixed solvent for the removal of a $Cu_2O$ layer on Cu particles that were oxidized in air for 1 hr at $200^{\circ}C$ or for 3 days at room temperature. Furthermore, we discussed the results of post-Ag plating with respect to removal level of the oxide layer. X-ray diffraction results revealed that the removal rate of the oxide layer is directly proportional to the concentration of the pretreatment solvent. With the results of Auger electron spectroscopy using oxidized Cu plates, the concentrations required to completely remove 50-nm-thick and 2-nm-thick oxides within 5 min were determined to be X2.5 and X0.13. However, the optimal concentrations in an actual Ag plating process using Cu powder increased to X0.4 and X0.5, respectively, because the oxidation in powder may be accelerated and the complete removal of oxide should be tuned to the thickest oxide layer among all the particles. Back-scattered electron images showed the formation of pure fine Ag particles instead of a uniform and smooth Ag coating in the Ag plating performed after incomplete removal of the oxide layer, indicating that the remaining oxide layer obstructs heterogeneous nucleation and plating by reduced Ag atoms.

Study on Electrical Characteristic of Self-assembled Nitro Molecule Onto Au(111) Substrate by Using STM/STS (STM/STS에 의한 Au(111) 표면에 자기조립된 니트로분자의 전기적 특성 측정)

  • Lee Nam-Suk;Kwon Young-Soo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.16-19
    • /
    • 2006
  • The characteristic of negative differential resistance(NDR) is decreased current when the applied voltage is increased. The NDR is potentially very useful in molecular electronics device schemes. Here, we investigated the NDR characteristic of self-assembled 4,4'-di(ethynylphenyl)-2'-nitro-1-benzenethiolate, which has been well known as a conducting molecule. Self-assembly monolayers(SAMs) were prepared on Au(111), which had been thermally deposited onto $pre-treatment(H_2SO_4:H_2O_2=3:1)$ Si. The Au substrate was exposed to a 1 mM/1 solution of 1-dodecanethiol in ethanol for 24 hours to form a monolayer. After thorough rinsing the sample, it was exposed to a 0.1 ${\mu}M/l$ solution of 4.4'-di(ethynylphenyl)-2'-nitro-1-(thioacetyl)benzene in dimethylformamide(DMF) for 30 min and kept in the dark during immersion to avoid photo-oxidation. After the assembly, the samples were removed from the solutions, rinsed thoroughly with methanol, acetone, and $CH_2Cl_2,$ and finally blown dry with N_2. Under these conditions, we measured electrical properties of self-assembly monolayers(SAMs) using ultra high vacuum scanning tunneling microscopy(UHV-STM). The applied voltages were from -2 V to +2 V with 298 K temperature. The vacuum condition was $6{\time}10^{-8}$ Torr. As a result, we found the NDR voltage of the 4,4'-di(ethynylphenyl)-2'-nitro-1-benzenethiolate were $-1.61{\pm}0.26$ V(negative region) and $1.84{\pm}0.33$ V(positive region). respectively.

Study on electrical property of self-assembled nitro molecule onto Au(111) by Using STM/STS (STM/STS에 의한 Au (111)에 자기조립된 니트로분자의 전기적 특성 측정)

  • Lee, Nam-Suk;Choi, Won-Suk;Shin, Hoon-Kyu;Chang, Jeong-Soo;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1844-1846
    • /
    • 2005
  • The characteristic of negative differential resistance(NDR) is decreased current when the applied voltage is increased. The NDR is potentially very useful in molecular electronics device schemes. Here, we investigated the NDR property of self-assembled 4,4- Di(ethynylphenyl)-2'-nitro-1-(thioacetyl)benzene, which has been well known as a conducting molecule. Self-assembly monolayers(SAMs) were prepared on Au(111), which had been thermally deposited onto pre-treatment$(H_2SO_4:H_2O_2=3:1)$ Si. The Au substrate was exposed to a 1mM/l solution of 1-dodecanethiol in ethanol for 24 hours to form a monolayer. After thorough rinsing the sample, it was exposed to a $0.1{\mu}M/l$ solution of 4,4-Di(ethynylphenyl)-2'-nitro-1-(thioacetyl)benzene in dimethylformamide(DMF) for 30 min and kept in the dark during immersion to avoid photo-oxidation. After the assembly, the samples were removed from the solutions, rinsed thoroughly with methanol, acetone, and $CH_2Cl_2$, and finally blown dry with $N_2$. Under these conditions, we measured electrical properties of self-assembly monolayers(SAMs) using ultra high vacuum scanning tunneling microscopy(UHV-STM). The applied voltages were from -2V to +2V with 299K temperature. The vacuum condition is $6{\times}10^{-8}$ Torr. As a result, we found the NDR voltage of the nitro-benzene is $-1.61{\pm}0.26$ V(negative region) and $1.84{\pm}0.33$ (positive region), respectively.

  • PDF

Development of CCD(Corrosion Control Document) in Refinery Process (정유공정의 CCD(Corrosion Control Document) 개발)

  • Kim, Jung-Hwan;Kim, Ji-Yong;Lee, Young-Hee;Park, Sang-Rok;Suh, Sun-Kyu;Lee, Yoon-Hwa;Moon, Il
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.1
    • /
    • pp.31-36
    • /
    • 2009
  • This paper focuses on techniques of improving refinery reliability, availability, and profitability. Our team developed a corrosion control document(CCD) for processing of the crude distillation unit(CDU). Recent study shows the loss due to corrosion in US is around $276 billion. It's a big concern for both managers and engineers of refinery industry. The CCD consists of numerous parts namely damage mechanism(DM), design data, critical reliability variable(CRV), guidelines, etc. The first step in the development of CCD is to build material selection diagram(MSD). Damage mechanisms affecting equipments and process need to be chosen carefully based on API 571. The selected nine DM from API 571 are (1) creep/stress rupture, (2) fuel ash corrosion, (3) oxidation, (4) high temperature sulfidation, (5) naphthenic acid corrosion, (6) hydrochloric acid(HCL) corrosion, (7) ammonium chloride(salt) corrosion, (8) wet $H_2S$ corrosion, and (9) ammonia stress corrosion cracking. Each DM related to corrosion of CDU process was selected by design data, P&ID, PFD, corrosion loop, flow of process, equipment's history, and experience. Operating variables affecting severity of DM are selected in initial stage of CRV. We propose the guidelines for reliability of equipments based on CRV. The CCD has been developed on the basis of the corrosion control in refinery industry. It also improves the safety of refinery process and reduces the cost of corrosion greatly.

Formation Mechanisms of Sn Oxide Films on Probe Pins Contacted with Pb-Free Solder Bumps (무연솔더 범프 접촉 탐침 핀의 Sn 산화막 형성 기제)

  • Bae, Kyoo-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.545-551
    • /
    • 2012
  • In semiconductor manufacturing, the circuit integrity of packaged BGA devices is tested by measuring electrical resistance using test sockets. Test sockets have been reported to often fail earlier than the expected life-time due to high contact resistance. This has been attributed to the formation of Sn oxide films on the Au coating layer of the probe pins loaded on the socket. Similar to contact failure, and known as "fretting", this process widely occurs between two conductive surfaces due to the continual rupture and accumulation of oxide films. However, the failure mechanism at the probe pin differs from fretting. In this study, the microstructural processes and formation mechanisms of Sn oxide films developed on the probe pin surface were investigated. Failure analysis was conducted mainly by FIB-FESEM observations, along with EDX, AES, and XRD analyses. Soft and fresh Sn was found to be transferred repeatedly from the solder bump to the Au surface of the probe pins; it was then instantly oxidized to SnO. The $SnO_2$ phase is a more stable natural oxide, but SnO has been proved to grow on Sn thin film at low temperature (< $150^{\circ}C$). Further oxidation to $SnO_2$ is thought to be limited to 30%. The SnO film grew layer by layer up to 571 nm after testing of 50,500 cycles (1 nm/100 cycle). This resulted in the increase of contact resistance and thus of signal delay between the probe pin and the solder bump.

A Study on Anti-oxidization Coating for Staged Combustion Cycle Rocket Engines (다단연소 사이클 엔진 적용을 위한 내산화 코팅에 관한 연구)

  • Kim, Young-June;Rhee, Byong-ho;Noh, Yong-Oh;Bae, Byung-Hyun;Hyun, Seong-Yoon;Cho, Hwang-Rae;Bang, Jeong-Suk;Byon, Eung-Sun;Han, Yeoung-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.125-131
    • /
    • 2018
  • Some propellants in a liquid rocket engine are burned in the pre-burner of a staged combustion cycle engine, resulting hot gas drives the turbine. The burned gas passing through the turbine is supplied to the combustor at high temperature and pressure. The form of the gas can be fuel rich or oxidizer rich dependent upon the mixture ratio or the engine scheme. When the cycle works at oxidizer-rich condition, the metal pipes composing the engine can be ignited or even exploded by an impact of very a small particle. In this study, we developed the powder combination and processes for an anti-oxidation coating through the analysis of various coating materials.

Development of promotors for fast redox reaction of MgMnO3 oxygen carrier material in chemical looping combustion

  • Hwang, Jong Ha;Lee, Ki-Tae
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.372-377
    • /
    • 2018
  • MgO or gadolinium-doped ceria (GDC, $Ce_{0.9}Gd_{0.1}O_{2-{\delta}}$) was added as a promoter to improve the oxygen transfer kinetics of $MgMnO_3$ oxygen carrier material for chemical looping combustion. Neither MgO nor GDC reacted with $MgMnO_3$, even at the high temperature of $1100^{\circ}C$. The average oxygen transfer capacities of $MgMnO_3$, 5 wt% $MgO-MgMnO_3$, and 5 wt% $GDC-MgMnO_3$ were 8.74, 8.35, and 8.13 wt%, respectively. Although the addition of MgO or GDC decreased the oxygen transfer capacity, no further degradation was observed during their use in 5 redox cycles. The addition of GDC significantly improved the conversion rate for the reduction reaction of $MgMnO_3$ compared to the use of MgO due to an increase in the surface adsorption process of $CH_4$ via oxygen vacancies formed on the surface of GDC. On the other hand, the conversion rates for the oxidation reaction followed the order 5 wt% $GDC-MgMnO_3$ > 5 wt% $MgO-MgMnO_3$ >> $MgMnO_3$ due to morphological change. MgO or GDC particles suppressed the grain growth of the reduced $MgMnO_3$ (i.e., (Mg,Mn)O) and increased the specific surface area, thereby increasing the number of active reaction sites.

Thermal and Rheological Characterizations of Polycarbosilane Precursor by Solvent Treatment (폴리카보실란 전구체의 용매 처리에 따른 열적 및 유변학적 특성 분석)

  • Song, Yeeun;Joo, Young Jun;Shin, Dong Geun;Cho, Kwang Youn;Lee, Doojin
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.23-30
    • /
    • 2022
  • Polycarbosilane(PCS) is an important precursor for melt-spinning the silicon carbide(SiC) fibers and manufacturing ceramics. The PCS is a metal-organic polymer precursor capable of producing continuous SiC fibers having excellent performance such as high-temperature resistance and oxidation resistance. The SiC fibers are manufactured through melt-spinning, stabilization, and heat treatment processes using the PCS manufactured by synthesis, purification, and control of the molecular structure. In this paper, we analyzed the effect of purification of unreacted substances and low molecular weight through solvent treatment of PCS and the effect of heat treatment at various temperatures change the polymerization and network rearrangement of PCS. Especially, we investigated the complex viscosity and structural arrangement of PCS precursors according to solvent treatment and heat treatment through the rheological properties.

Effect of Heat Treatment on Mechanical Properties of Cross-Linked Ultra-High Molecular Weight Polyethylene Used for Artificial Joint Liner (인공관절 라이너용 가교된 초고분자량폴리에틸렌(UHMWPE)의 열처리 조건에 따른 기계적 특성 변화)

  • Kim, Hyun-Mook;Kim, Dong-Hoon;Gu, Ja-Uk;Choi, Nak-Sam;Kim, Sung-Kon
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.1-6
    • /
    • 2009
  • The mechanical characteristics of gamma-ray irradiated UHMWPE specimens were investigated under various heat treatment conditions. The heat treatment was performed in the range of annealing and remelting temperatures. The annealing treatment below the temperature of $130^{\circ}C$ hardly induced changes in the tensile strength, the strain at the failure and the hardness. However the remelting treatment above $140^{\circ}C$ deteriorated those mechanical properties. It was shown in an FTIR analysis that the annealing treatment caused some oxidation of free radicals created by the pretreatment of the irradiation. These quantitative data represented by the behavior of mechanical properties might be used as basic informations for the design and analysis of various artificial joints.