DOI QR코드

DOI QR Code

Pretreatment Condition of Cu by Ammonium-Based Mixed Solvent and Its Effects on the Fabrication of Ag-Coated Cu Particles

Ag 도금 Cu 입자의 제조에서 암모늄 기반 혼합 용매를 사용한 Cu 입자의 전처리 조건과 이의 영향

  • Lee, Hee Bum (Department of Materials Science & Engineering, Seoul National University of Science & Technology) ;
  • Lee, Jong-Hyun (Department of Materials Science & Engineering, Seoul National University of Science & Technology)
  • 이희범 (서울과학기술대학교 신소재공학과) ;
  • 이종현 (서울과학기술대학교 신소재공학과)
  • Received : 2015.07.17
  • Accepted : 2015.08.03
  • Published : 2016.03.27

Abstract

To achieve the fabrication of high-quality Ag-coated Cu particles through a wet chemical process, we reported herein pretreatment conditions using an ammonium-based mixed solvent for the removal of a $Cu_2O$ layer on Cu particles that were oxidized in air for 1 hr at $200^{\circ}C$ or for 3 days at room temperature. Furthermore, we discussed the results of post-Ag plating with respect to removal level of the oxide layer. X-ray diffraction results revealed that the removal rate of the oxide layer is directly proportional to the concentration of the pretreatment solvent. With the results of Auger electron spectroscopy using oxidized Cu plates, the concentrations required to completely remove 50-nm-thick and 2-nm-thick oxides within 5 min were determined to be X2.5 and X0.13. However, the optimal concentrations in an actual Ag plating process using Cu powder increased to X0.4 and X0.5, respectively, because the oxidation in powder may be accelerated and the complete removal of oxide should be tuned to the thickest oxide layer among all the particles. Back-scattered electron images showed the formation of pure fine Ag particles instead of a uniform and smooth Ag coating in the Ag plating performed after incomplete removal of the oxide layer, indicating that the remaining oxide layer obstructs heterogeneous nucleation and plating by reduced Ag atoms.

Keywords

References

  1. X. Xu, X. Luo, H. Zhuang, W. Li and B. Zhang, Mater. Lett., 57, 3987 (2003). https://doi.org/10.1016/S0167-577X(03)00252-0
  2. D. S. Jung, H. M. Lee, Y. C. Kang and S. B. Park, J. Colloid Interface Sci., 364, 574 (2011). https://doi.org/10.1016/j.jcis.2011.08.033
  3. J. Zhao, D. M. Zhang and J. Zhao, J. Solid State Chem., 184, 2339 (2011). https://doi.org/10.1016/j.jssc.2011.06.032
  4. H. T. Hai, J. G. ahn, D. J. Kim, J. R. Lee, H. S. Chung and C. O. Kim, Surf. Coat. Technol., 201, 3788 (2006). https://doi.org/10.1016/j.surfcoat.2006.03.025
  5. M. Grouchko, A. Kamyshny and S. Magdassi, J. Mater. Chem., 19, 3057 (2009). https://doi.org/10.1039/b821327e
  6. Y. Peng, C. Yang, K. Chen, S. R. Popuri, C. -H. Lee and B. -S. Tang, Appl. Surf. Sci., 263, 38 (2012). https://doi.org/10.1016/j.apsusc.2012.08.066
  7. A. Muzikansky, P. Nanikashvili, J. Grinblat and D. Zitoun, J. Phys. Chem. C, 117, 3093 (2013).
  8. R. Zhang, W. Lin, K. Lawrence and C. P. Wong, Int. J. Adhe. Adhes., 30, 403 (2010). https://doi.org/10.1016/j.ijadhadh.2010.01.004
  9. J. H. Kim and J. -H. Lee, Korean. J. Mater. Res., 24, 617 (2014). https://doi.org/10.3740/MRSK.2014.24.11.617
  10. G. Kim, K. -M Jung, J. -T. Moon and J. -H. Lee, J. Microelectron. Packag. Soc., 21, 51 (2014).
  11. H. -W. Cui, J. -T. Jiu, T. Sugahara, S. Nagao, K. Suganuma and H. Uchida, Electron. Mater. Lett., 11, 315 (2015). https://doi.org/10.1007/s13391-014-4292-2
  12. Y. -S. Eom, K. -S. Choi, S. -H. Moon, J. -H. Park, J.-H. Lee and J. -T. Moon, ETRI J. 33, 864 (2011). https://doi.org/10.4218/etrij.11.0110.0520
  13. Y. Plyuto, J. -M. Berquier, C. Jacquiod and C. Ricolleau, Chem. Commun., 17, 1653 (1999).
  14. R. G. Haverkamp and A. T. Marshall, J. Nanopart. Res., 11, 1453 (2009). https://doi.org/10.1007/s11051-008-9533-6
  15. D. V. Goia and E. Matijevic, New J. Chem., 22, 1203 (1998). https://doi.org/10.1039/a709236i