Development of promotors for fast redox reaction of MgMnO3 oxygen carrier material in chemical looping combustion

  • Hwang, Jong Ha (Department of Mineral Resources & Energy Engineering, Chonbuk National University) ;
  • Lee, Ki-Tae (Division of Advanced Materials Engineering, Chonbuk National University)
  • Published : 2018.10.01

Abstract

MgO or gadolinium-doped ceria (GDC, $Ce_{0.9}Gd_{0.1}O_{2-{\delta}}$) was added as a promoter to improve the oxygen transfer kinetics of $MgMnO_3$ oxygen carrier material for chemical looping combustion. Neither MgO nor GDC reacted with $MgMnO_3$, even at the high temperature of $1100^{\circ}C$. The average oxygen transfer capacities of $MgMnO_3$, 5 wt% $MgO-MgMnO_3$, and 5 wt% $GDC-MgMnO_3$ were 8.74, 8.35, and 8.13 wt%, respectively. Although the addition of MgO or GDC decreased the oxygen transfer capacity, no further degradation was observed during their use in 5 redox cycles. The addition of GDC significantly improved the conversion rate for the reduction reaction of $MgMnO_3$ compared to the use of MgO due to an increase in the surface adsorption process of $CH_4$ via oxygen vacancies formed on the surface of GDC. On the other hand, the conversion rates for the oxidation reaction followed the order 5 wt% $GDC-MgMnO_3$ > 5 wt% $MgO-MgMnO_3$ >> $MgMnO_3$ due to morphological change. MgO or GDC particles suppressed the grain growth of the reduced $MgMnO_3$ (i.e., (Mg,Mn)O) and increased the specific surface area, thereby increasing the number of active reaction sites.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. The Paris Agreement, United Nations 2015.
  2. R. Perez-Vega, A. Abad, P. Gayan, L.F. de Diego, F. Garcia-Labiano, J. Adanez, Fuel Process. Technol. 164 (2017) 69-79. https://doi.org/10.1016/j.fuproc.2017.04.019
  3. J. Fan, H. Hong, L. Zhu, Q. Jiang, H. Jin, Appl. Energy 195 (2017) 861-876. https://doi.org/10.1016/j.apenergy.2017.03.093
  4. I. Adanez-Rubio, A. Perez-Astray, T. Mendiara, M.T. Izquierdo, A. Abad, P. Gayan, L.F. de Diego, F. GarciaLabiano, J. Adanez, Fuel Process. Technol. 172 (2018) 179-186. https://doi.org/10.1016/j.fuproc.2017.12.010
  5. H.A. Alalwan, D.M. Cwiertny, V.H. Grassian, Chem. Eng. J. 319 (2017) 279-287. https://doi.org/10.1016/j.cej.2017.02.134
  6. B.S. Kwak, N.-K. Park, S.O. Ryu, J.-In. Baek, H.-J. Ryu, M. Kang, Chem. Eng. J. 309 (2017) 617-627. https://doi.org/10.1016/j.cej.2016.10.040
  7. A. Abad, R. Perez-vega, L.F. de Diego, F. Garcialabiano, P. Gayan, J. Adanez, Appl. Energy 157 (2015) 295-303. https://doi.org/10.1016/j.apenergy.2015.03.094
  8. A. Nandy, C. Loha, S. Gu, P. Sarkar, M.K. Karmakar, P.K. Chatterjee, Renew. Sustainable Energy Rev. 59 (2016) 597-619. https://doi.org/10.1016/j.rser.2016.01.003
  9. W.-C. Huang, Y.-L. Kuo, P.-C. Su, Y.-H. Tseng, H.-Y. Lee, Y. Ku, Chem. Eng. J. 334 (2018) 2079-2087. https://doi.org/10.1016/j.cej.2017.11.177
  10. S.K. Haider, G. Azimi, L. Duan, E.J. Anthony, K. Patchigolla, J.E. Oakey, H. Leion, T. Mattisson, A. Lyngfelt, Appl. Energy 163 (2016) 41-50. https://doi.org/10.1016/j.apenergy.2015.10.142
  11. A. Cabello, A. Abad, F. Garcia-Labiano, P. Gayan, L.F. de Diego, J. Adanez, Chem. Eng. J. 258 (2014) 265-280. https://doi.org/10.1016/j.cej.2014.07.083
  12. W. Yang, H. Zhao, K. Wang, C. Zheng, Proc. Combust. Inst. 35 (2015) 2811-2818. https://doi.org/10.1016/j.proci.2014.07.010
  13. J.H. Hwang, J.I. Baek, H.J. Ryu, J.M. Sohn, K.T. Lee, Fuel 231 (2018) 290-296. https://doi.org/10.1016/j.fuel.2018.05.111
  14. K. Kim, S. Yang, K. Shin, ACS Omega 3 (2018) 4378-4383. https://doi.org/10.1021/acsomega.8b00228
  15. Y. Tan, N. Duan, A. Wang, D. Yan, B. Chi, N. Wang, J. Pu, J. Li, J. Power Sources 305 (2016) 168-174. https://doi.org/10.1016/j.jpowsour.2015.11.094
  16. C. Zhang, R. Ran, G. H. Pham, K. Zhang, J. Liu,S. Liu, RSC Adv. 5 (2015) 5379-5386. https://doi.org/10.1039/C4RA10711J
  17. X. Huang, X. Wang, M. Fan, Y. Wang, H. Adidharma, K.A.M. Gasem, M. Radosz, Appl. Energy 193 (2017) 381-392. https://doi.org/10.1016/j.apenergy.2017.02.059
  18. S. Jiang, L. Shen, J. Wu, J. Yan, T. Song, Chem. Eng. J. 317 (2017) 132-142. https://doi.org/10.1016/j.cej.2017.01.091
  19. R.T. Yang, K.L. Yang, Carbon 23 (1985) 537-547. https://doi.org/10.1016/0008-6223(85)90090-9
  20. J. Gadsby, F.J. Long, P. Sleightholm, K.W. Sykes, Proc. Roy. Soc. 193 (1948) 357-376. https://doi.org/10.1098/rspa.1948.0051
  21. C. Sun, H. Li, L. Chen, Energy Environ. Sci. 5 (2012) 8475-8505. https://doi.org/10.1039/c2ee22310d