• Title/Summary/Keyword: high-strength concrete column

Search Result 448, Processing Time 0.028 seconds

Structural Performance of Concrete-encased Steel Columns using 800MPa Steel and 100MPa Concrete (800MPa 강재 및 100MPa 콘크리트를 적용한 매입형 합성기둥의 구조성능)

  • Kim, Chang-Soo;Park, Hong-Gun;Choi, In-Rak;Chung, Kyung-Soo;Kim, Jin-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.497-509
    • /
    • 2010
  • Five concrete-encased steel columns using high-strength steel($f_{ys}$=801MPa) and high-strength concrete($f_{ck}$=97.7MPa) were tested to investigate the eccentric axial load-displacement relationship. Test parameters included the type, yield strength, and spacing of lateral reinforcement, and also the eccentricity of axial load. To analyze the behavior of the column specimens, the nonlinear sectional analysis using strain-compatibility and confinement effect was performed. To examine the applicability of existing design codes for the composite sections using high-strength materials, the test results were also compared with the predictions by the nonlinear analysis and the design codes. The confinement effect of lateral reinforcement increased the ductility of concrete, and the moment capacity of the column specimens increased with the ductility of concrete. The prediction by the nonlinear analysis gave good agreement with the test results. On the other hand, the ACI 318 neglecting lateral confinement effect underestimated the strength of the column specimens, and the Eurocode 4 using complete plastic capacity of steel section overestimated.

Exposed Reinforced Concrete-Filled Steel Tubular (RCFST) column-base joint with high-strength

  • Mou, Ben;Wang, Zian;Qiao, Qiyun;Zhou, Wanqiu
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • The weld quality has always been an important factor affecting the development of exposed CFT column-base joint. In this paper, a new type of exposed RCFST column-base joint is proposed, in which the high strength steel bars (USD 685) are set through the column and reinforced concrete foundation without any base plate and anchor bolts. Three specimens, the varying axial force ratio (0, 0.25 and 0.5), were tested under cyclic loadings. In addition, the bending moment capacity, energy dissipation capacity and deformation capacity of column-base joints were clarified. The experimental results indicated that the axial force ratio increases the stiffness and the bending moment and improves the energy dissipation capacity of column-base joints. This is because a large axial force can limit the slip between steel tubular and infilled concrete effectively. The specimens show stable hysteresis behavior.

Experimental Study of High Strength Concrete Beam-Column-Slab Connections subjected to cyclic loading (고강도 콘크리트 보-기둥-슬래브 접합부의 반복하중 실험)

  • 오영훈;오정근;장극관;김윤일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.339-344
    • /
    • 1995
  • In the design of ductile moment-resisting frames (DMRFs) following the strong column-weak beam dsign philosophy, it is desirable that the joint and column remain essentially elastic in order to insure proper energy dissipation and lateral stability of the structure. The joint has been identified as the "weak link" in DMRFs because any stiffness or strength deterioration in this region can lead to substantial drifts and the possibility of collapse due to P-delta effects. Moreover, the engineer is faced with the difficult task of detailing an element whose size is determined by the framing members, but which must resist a set of loads very different from those used in the design of the beams and columns. Four 2/3-scale beam-column-slab joint assemblies were designed according to existing code requirements of ACI 318-89, representing interior joints of DMRFs with reinforced high strength concrete. The influence on aseismic behavior of beam-column joints due to monolithic slab, has been investigated.estigated.

  • PDF

An Experimental Study on the Explosive Spalling Properties of High Strength Concrete Structure Member (고강도 콘크리트 구조부재의 폭렬 특성에 관한 실험적 연구)

  • Kim, Heung-Youl;Jeon, Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.421-424
    • /
    • 2006
  • This study, in order for perceiving the mechanical attribute followed by the explosive spalling of high strength concrete material under high temperature and evaluating capacity of endurance of material, targets understanding capacity of endurance of material such as explosive spalling in high temperature, temperature by thickness of clothing, transformation extent, transformation speed and displacement, stocking the maximum load based on the Allowable Stress Design Method. As a result of experimenting the explosive spalling attribute of high strength concrete material, the one possibly causing serious damage is the 50 MPa concrete. In all aspects of 60 MPa concrete, explosive spalling happens. Especially, it is hazardous enough to reveal all the iron bar. All explosive spalling is intensively concentrated on the surface of concrete for the first $5{\sim}25$ minutes, which urges for the explosive spalling protection action. As a result of evaluating the structural safety by the transformation of high strength concrete, while beam assures the fire safety meeting regulation, 60 MPa shows the dramatic increase of transformation, which only counts 84% of safety. In a column, both the concrete exclusion and excessive explosive spalling are concentrated upper part of column, which brings about the dramatic transformation, so it only meets the 50% of safety regulation. Likewise, in 80, 100 MPa concrete which was never experimented considering the condition of domestic structural endurance stocking devices, the faster collapse is expected.

  • PDF

Finite element analysis of RC beam-column joints with high-strength materials

  • Noguchi, H.;Kashiwazaki, T.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.625-634
    • /
    • 1997
  • Reinforced concrete (RC) interior beam-column joints with high-strength materials: concrete compressive strength of 100 MPa and the yield strength of longitudinal bars of 685 MPa, were analyzed using three-dimensional (3-D) nonlinear finite element method (FEM). Specimen OKJ3 of joint shear failure type was a plane interior joint, and Specimen 12 of beam flexural failure type was a 3-D interior joint with transverse beams. Though the analytical initial stiffness was higher than experimental one, the analytical results gave a good agreement with the test results on the maximum story shear forces, the failure mode.

Spreading Beam Poastic Hinging Zone of the High-Strength R/C Beam-Column Joints Using the Vertically Anchored Intermediate Reinforcements (수직앵커형 중간철근으로 보강된 고강도 철근콘크리트 보_-기둥 접합부의 소성힌지 확산)

  • 유영찬;이원호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.4
    • /
    • pp.169-179
    • /
    • 1995
  • The purpose of this study is to spread beam plastic hinging zone of the high-strength($f'_c=700kg/cm^2$) reinforced concrete beam-column joints away from the column face by vertically anchored intermediate reinforcements. The newly proposed intermediate reinforcements which are vertically anchored by interlinking each intermediate rebars are tested to insure the ductile behavior of R /C beam-column joins. Main variable is the shape of intermediate reinforcements. From the test results, the newly proposed intermediate rebar detail can move arid expand the beam plastic hinging zone about 1.Od from column face and can delay the strength decay of the high-strength R /C beam-column joint. Also energy dissipation capacity of specimen IV-1.OD10 which is reinforced by vertically anchored intermediate rebars about 1.0d is 1.6 times as high as the specimen CM-STAN which is designed by ACI318-89.

Seismic Behavior of High-Strength Concrete Square Short Columns Confined in Thin Steel Shell

  • Han, Byung-Chan;Yun, Hyun-Do;Chung, Soo-Young
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.23-34
    • /
    • 2000
  • Experiments were carried out to investigate the seismic behaviors, such as lateral strength, ductility and energy-dissipation capacity. of high-strength concrete (HSC) square short column confined in thin steel shell. The primary objective of the study was to investigate the suitability of using HSC square columns confined in thin steel shell in region of moderate-to-high seismic risk. A total of six columns, consisting of two ordinarily reinforced concrete square short columns and four reinforced concrete square short columns confined in thin steel shell was tested. Column specimens, short columns in a moment resisting frame with girder. were tested under a constant axial and reversed cyclic lateral loads. To design the specimens. transverse reinforcing methods, level of axial load applied, and the steel tube width-thickness ratio (D/t) were chosen as main parameters. Test results were also discussed and compared in the light of improvements in general behaviors, ductility, and energy-absorption capacities. Compared to conventionally reinforced concrete columns, the HSC columns confined in thin steel shell had similar load-displacement hysteretic behavior but exhibited greater energy-dissipation characteristics . It is concluded that, in strong earthquake areas, the transverse reinforcing method by using a thin steel shell (D/t=125) is quite effective to make HSC short columns with very strong and ductile.

  • PDF

SFRHPC interior beam-column-slab joints under reverse cyclic loading

  • Ganesan, N.;Nidhi, M.;Indira, P.V.
    • Advances in concrete construction
    • /
    • v.3 no.3
    • /
    • pp.237-250
    • /
    • 2015
  • Beam-column joints are highly vulnerable locations which are to be designed for high ductility in order to take care of unexpected lateral forces such as wind and earthquake. Previous investigations reveal that the addition of steel fibres to concrete improves its ductility significantly. Also, due to presence of slab the strength and ductility of the beam increases considerably and ignoring the effect of slab can lead to underestimation of beam capacity and defiance of strong column weak beam concept. The influence of addition of steel fibres on the strength and behaviour of steel fibre reinforced high performance concrete (SFRHPC) interior beam-column-slab joints was investigated experimentally. The specimens were subjected to reverse cyclic loading. The variable considered was the volume fraction of crimped steel fibres i.e., 0%, 0.5% and 1.0%. The results show that the addition of steel fibres improves the first crack load, strength, ductility, energy absorption capacity and initial stiffness of the beam.

A Study on P-M Interaction Diagram of Fire-Damaged High Strength Concrete Column (화재 피해를 입은 고강도 RC 기둥의 P-M 상관곡선에 관한 연구)

  • Kim, Hyun-Jung;Choi, Eun-Gyu;Shin, Yeong-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.257-260
    • /
    • 2008
  • This study will make P-M interaction diagram of residual capacity at fire-damaged High strength concrete column with polypropylene fiber. Evaluating capacity of column decreasing spalling with P-M interaction diagram is important. because high strength concrete column with polypropylene fiber isn't section area loss. P-M interaction diagram that is made to analyze according to a various parameters is useful index for design and evaluating capacity of columns. In this study, spalling, temperature distribution of interior column, residual strength and movement of column in eccentric loading are studied with expose time of high temperature. For study fire test that is similar real act, and after cooling in normal condition residual strength of specimen is estimated. And this study use DIANA(Displacement Analyzer) for analyzing nonlinear analysis. with experiment temperature and strength data.

  • PDF

A Study on Flexural Behavior of R.C. Columns with the configuration of Lateral Ties (띠철근 기근 형태에 따른 철근콘크리트 기둥의 휨 거동 에 관한 연구)

  • 조세용;양근혁;이영호;정헌수
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.53-60
    • /
    • 2000
  • The objective of this study is to investigate the flexural behavior of reinforced concrete columns confined by lateral ties. This test was carried on the twelve reinforced concrete columns subjected to lateral and constant axial loads. The main experimental variables are concrete strength, the configuration of lateral ties, and the amount of lateral ties. Test results indicated that the steel configuration in column sections plays an important role in column behavior, and a proper configuration of lateral ties can obtain more ductile by the reduction of the space of lateral ties. Also, this experiment show that the utlization of high-strength concrete in columns properly designed on ACI Code takes less ductile. Therefore, we can conclude that the design of high-strength concrete columns under high axial loads requires more lateral ties than ACI Code.