• Title/Summary/Keyword: high-speed weigh-in-motion(HS-WIM)

Search Result 6, Processing Time 0.021 seconds

An Analysis of Test Results Using the New Fusion Weight Conversion Algorithm for High-speed Weigh-In-Motion System (주행시험을 통한 고속축중기의 융합형 중량환산 알고리즘 효과 분석)

  • Kim, Jong Woo;Jung, Young Woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.4
    • /
    • pp.67-80
    • /
    • 2020
  • High-speed weigh in motion (HS-WIM) is a real-time unmanned system for measuring the weight of a freight-carrying vehicle while it is in motion without controlling vehicle traffic flow or deceleration. In Korea, HS-WIM systems are installed on the national highways and general national ways for pre-selection by law enforcement. In this study, to improve the measurement accuracy of HS-WIM, we devise improvements to the existing integral and peak weight conversion algorithms, and we provide a new fusion algorithm that can be applied to the mat-type HS-WIM. As a result of analyzing vehicle driving tests at a real site, we confirmed the highest level of weight-measuring accuracy.

Evaluating Rutting Performance of High-Durability Asphalt Concrete Mixtures and Epoxy Used for Installation of High-Speed Weigh-In-Motion System (고속축중기 시스템의 도입을 위한 고기능 아스팔트 혼합물 및 에폭시의 내구성 평가)

  • Kwon, Hong Jun;Lee, Jong Sub;Kwon, Oh Sun;Kwon, Soon Min
    • International Journal of Highway Engineering
    • /
    • v.20 no.4
    • /
    • pp.7-13
    • /
    • 2018
  • PURPOSES : In order to apply high-speed weigh-in-motion (HS WIM) systems to asphalt pavement, three high-durability asphalt concrete mixtures installed with a WIM epoxy are evaluated. METHODS : In this study, dynamic stability, number of loading repetitions to reach the rut depth of 1 mm, and rut depth measurements of three asphalt mixtures at $60^{\circ}C$ were compared using an Asphalt Pavement Analyzer (APA). Laboratory-fabricated material and field core samples were prepared and tested according to KS F2374. RESULTS : Through the laboratory tests, it was found that all three modified asphalt mixtures (stone-mastic, porous, and semi-rigid) with WIM epoxy showed favorable permanent deformation results and passed the dynamic stability criterion of 3000 loading repetitions per 1 mm. In addition, it was confirmed that the modified SMA mixtures cored from the field construction yields satisfactory rutting testing results using the APA. Finally, the epoxy used for the HS WIM installation shows good adhesion with the three asphalt mixtures and permanent deformation resistance.

Overloading Control Effectiveness of Overweight Enforcement System using High-Speed Weigh-In-Motion (고속축중기를 활용한 과적단속시스템의 과적 억제효과 분석)

  • Kwon, Soon-Min;Jung, Young-Yoon;Lee, Kyung-Bae
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.179-188
    • /
    • 2012
  • PURPOSES: The aim of this study is to analyze overloading control effectiveness of enforcing overweighted vehicles using HS-WIM (High-Speed Weigh-in-Motion) at main lane of expressway. METHODS: To analyze the weight distribution statistically, HS-WIM system should has an appropriate weighing accuracy. Thus, the weighing accuracy of the two HS-WIM systems was estimated by applying European specifications and ASTM (American Standards for Testing and Materials) for WIM in this study. Based on the results of accuracy test, overweight enforcement system has been operated at main lanes of two expressway routes in order to provide weight informations of overweighted vehicle in real time for enforcement squad. To evaluate the overloading control effectiveness with enforcement, traffic volume and axle loads of trucks for two months at the right after beginning of the enforcement were compared with data set for same periods before the enforcement. RESULTS: As the results of weighing accuracy test, both WIM systems were accepted to the most precise type that can be useful to applicate not only statistical purpose but enforcing on overweight vehicles directly. After the enforcement, the rate of overweighted trucks that weighed over enforcement limits had been decreased by 27% compared with the rate before the enforcement. Especially, the rate of overweighted trucks that weighed over 48 tons had been decreased by 91%. On the other hand, in counterpoint to decrease of the overweighted vehicle, the rate of trucks that weighed under enforcement limits had been increased by 7%. CONCLUSIONS: From the results, it is quite clear that overloading has been controlled since the beginning of the enforcement.

Influence on Predicted Performance of Jointed Concrete Pavement with Variations in Axle Load Spectra (축하중 분포 변화가 콘크리트 포장의 공용성 예측결과에 미치는 영향 연구)

  • Lee, Kyungbae;Kwon, Soonmin;Lee, Jaehoon;Sohn, Duecksu
    • International Journal of Highway Engineering
    • /
    • v.16 no.1
    • /
    • pp.11-19
    • /
    • 2014
  • PURPOSES : The purpose of this article is to investigate the predicted life of jointed concrete pavement (JCP) with two variables effecting on axle load spectra (ALS). The first variable is different data acquisition methods whether using high-speed weigh-in-motion (HS-WIM) or not and the other one is spectra distribution due to overweight enforcement on main-lane of expressway using HS-WIM. METHODS : Three sets of ALS had been collected i) ALS provided by Korea Pavement Research Program (KPRP), which had been obtained without using HS-WIM ii) ALS collected by HS-WIM before the enforcement at Kimcheon and Seonsan site iii) ALS collected after the enforcement at the same sites. And all ALS had been classified into twelve vehicle classes and four axle types to compare each other. Among the vehicle classes, class 6, 7, 10 and 12 were selected as the major target for comparing each ALS because these were considered as the primary trucks with a high rate of overweight loading. In order to analyze the performance of JCP based on pavement life, fatigue crack and International Roughness Index (IRI) were predicted using road pavement design program developed by KPRP and each ALS with same annual average daily traffic (AADT) was applied to design slab thickness. RESULTS : Comparison ALS of KPRP with those of HS-WIM shows that the ALS of KPRP has a low percentage of heavy spectra such as 6~9 tonnes for single axle, 18~21 tonnes for tandem axle and 27~30 tonnes for tridem axle than other two ALS of HS-WIM in most vehicle classes and axle types. It means that ALS of KPRP was underestimated. And after the enforcement, percentage of heavy spectra close to 10 tonnes per an axle are lowered than before the enforcement by the effect of overweight enforcement because the spectra are related to overweight regulation. Prediction results of pavement life for each ALS present that the ALS of HS-WIM collected before the enforcement makes the pavement life short more than others. On the other hand, the ALS of KPRP causes the longest life under same thickness of slab. Thus, it is possible that actual performance life of JCP under the traffic like ALS of HS-WIM could be short than predicted life if the pavement was designed based on ALS provided by KPRP. CONCLUSIONS : It is necessary to choose more reliable and practical ALS when designing JCP because ALS can be fairly affected by acquisition methods. In addition, it is important to extend performance life of the pavement in service by controlling traffic load such as overweight enforcement.

Analysis of Rear-end Collision Risks Using Weigh-in-Motion Data (고속도로 Weigh-in-Motion(WIM) 이벤트 자료를 활용한 후미추돌 위험도 분석 기법)

  • Oh, Min Soo;Park, Hyeon Jin;Oh, Cheol;Park, Soon Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.2
    • /
    • pp.152-167
    • /
    • 2018
  • The high-speed weigh-in-motion system can collect the traveling speed and load information of individual vehicles, which can be used in a variety of ways for the traffic surveillance. However, it has a limit to apply the high-speed weigh-in-motion data directly to a safety analysis because high-speed weigh-in-motion's raw data are point measured data. In order to overcome this problem, this paper proposes a method to calculate the conflict rate and the Impulse severity based on surrogate safety measures derived from the detection time, detection speed, vehicle length, vehicle type, vehicle weight. It will be possible to analyze and evaluate the risk of rear-end collision on freeway traffic. In addition, this study is expected to be used as a fundamental for identifying crash risks and developing policies to enhance traffic safety on freeways.

Development and Application of the High Speed Weigh-in-motion for Overweight Enforcement (고속축하중측정시스템 개발과 과적단속시스템 적용방안 연구)

  • Kwon, Soon-Min;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.69-78
    • /
    • 2009
  • Korea has achieved significant economic growth with building the Gyeongbu Expressway. As the number of new road construction projects has decreased, it becomes more important to maintain optimal status of the current road networks. One of the best ways to accomplish it is weight enforcement as active control measure of traffic load. This study is to develop High-speed Weigh-in-motion System in order to enhance efficiency of weight enforcement, and to analyze patterns of overloaded trucks on highways through the system. Furthermore, it is to review possibilities of developing overweight control system with application of the HS-WIM system. The HS-WIM system developed by this study consists of two sets of an axle load sensor, a loop sensor and a wandering sensor on each lane. A wandering sensor detects whether a travelling vehicle is off the lane or not with the function of checking the location of tire imprint. The sensor of the WIM system has better function of classifying types of vehicles than other existing systems by detecting wheel distance and tire type such as single or dual tire. As a result, its measurement errors regarding 12 types of vehicle classification are very low, which is an advantage of the sensor. The verification tests of the system under all conditions showed that the mean measurement errors of axle weight and gross axle weight were within 15 percent and 7 percent respectively. According to the WIM rate standard of the COST-323, the WIM system of this study is ranked at B(10). It means the system is appropriate for the purpose of design, maintenance and valuation of road infrastructure. The WIM system in testing a 5-axle cargo truck, the most frequently overloaded vehicle among 12 types of vehicles, is ranked at A(5) which means the system is available to control overloaded vehicles. In this case, the measurement errors of axle load and gross axle load were within 8 percent and 5 percent respectively. Weight analysis of all types of vehicles on highways showed that the most frequently overloaded vehicles were type 5, 6, 7 and 12 among 12 vehicle types. As a result, it is necessary to use more effective overweight enforcement system for vehicles which are seriously overloaded due to their lift axles. Traffic volume data depending upon vehicle types is basic information for road design and construction, maintenance, analysis of traffic flow, road policies as well as research.

  • PDF