• Title/Summary/Keyword: high-speed motion control

Search Result 265, Processing Time 0.027 seconds

Identification of Four-DOF Dynamics of a RIB using Sea Trial Tests (I) - Sea Trial Test, Resistance and Propulsion Model (해상시험 결과를 이용한 RIB의 4자유도 동력학 식별 (I) - 해상시험, 저항·추진 모델)

  • Yoon, Hyeon-Kyu;Yun, Kun-Hang;Park, In-Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • RIB(Rigid Inflatable Boat) is widely used for coastal transportation in the commercial use and for ISR(Intelligence, Surveillance, Reconnaissance) in the military use. Since RIB is around 10 meters in length and over 30 knots in speed, its motion characteristics in waves is quite different from a large scale ship. When it turns, large roll occurs and heeling direction is opposite to the large ship's case. Currently, many countries are developing USV(Unmanned Surface Vehicle) of which type is RIB. In order to develop high performance autopilot and way point controller, it is very important to identify RIB's motion characteristics. In this paper, sea trial test results of a 7-meter RIB such as speed, turning, zig-zag, and way point control tests were represented and its resistance and propulsion model was identified by using sea trial data and Savitsky's formula. In addition, the state space model which will be used in the identification of the four-degree-of-freedom dynamics in the next step was formulated and the identification procedure was proposed.

Contact control of a probing manipulator contacting with plastically deformable objects (소성변형가능한 물체와 접촉하는 프로브 매니퓰레이터의 접촉제어)

  • 심재홍;조형석;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.221-224
    • /
    • 1996
  • Since impact phenomenon is highly nonlinear, the analysis and control of the contact motion has been a challenging subject. Various researches have been carried out mostly for the contact of a rigid robotic manipulator with a stiff and elastic environment. This paper is motivated by a new contact task: the in-circuit test of a printed circuit board. In this process, high speed contact occurs between a rigid probing manipulator and a plastically deformable work environment. A new dynamic model of the impact controlled probing task has been proposed, considering contact with the plastically deformable object. Approaching velocity conditions to avoid an excess of the allowable penetration depth and control the generated impact force properly are derived from the proposed model. The results of the simulation studies are made for various probing conditions and show the validity of the proposed model.

  • PDF

Implementation of a control system for a telerobot using DSP (DSP를 이용한 원격 로봇의 제어 시스템 구현)

  • 노철래;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.844-849
    • /
    • 1991
  • A high speed control system for a telerobot using DSP is developed. The system is designed to resolve computational burden in advanced algorithms. The design is assumed to h ave no specific algorithm and robot configuration. The system is composed of a teaching box, a DSP board, a set of servo drivers and 16 bit microcomputer system. The teaching box is designed as a man-machine interface, which has two joysticks with three degrees of freedom for velocity generation in Cartesian space. The DSP board, i.e. DSP56000ADS based on a 10.25MIPS digital signal processor, DSP56001, computes the inverse Jacobian matrix which transforms Cartesian velocity into joint velocity. A resolved motion rate control algorithm for a 5 degrees of freedom manipulator was implemented. About 100 Hz sampling rate was achieved in this system.

  • PDF

Swimming Plans for a Bio-inspired Articulated Underwater Robot (생체모방형 수중다관절 로봇의 유영계획)

  • Kim, Hee-Jong;Lee, Jihong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.782-790
    • /
    • 2013
  • In this paper, we propose a better solution for swimming plans of an articulated underwater robot, Crabster, with a view point of biomimetics. As a biomimetic model of underwater organisms, we chose diving beetles structurally similar to Crabster. Various swimming locomotion of the diving beetle has been observed and sorted by robotics technology through experiments with a high-speed camera and image processing software Image J. Subsequently, coordinated patterns of rhythmic movements of the diving beetle are reproduced by simple control parameters in a parameter space which make it easy to control trajectories and velocities of legs. Furthermore, a simulation was implemented with an approximated model to predict the motion of the robot under development based on the classified forward and turning locomotion. Consequently, we confirmed the applicability of parameterized leg locomotion to the articulated underwater robot through the simulated results by the approximated model.

Development of Multi-Axis Controller using DSP and its use on a Robot Control System (DSP를 이용한 다축제어기 개발 및 로봇 제어 시스템에의 응용)

  • Lee, Joon-Soo;Yoo, Beom-Jae;Oh, Sang-Rok;Cho, Young-Jo;Lee, Chong-Won
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1225-1227
    • /
    • 1996
  • In this paper, we delelop 4-axis motion controller using TMS320c30 DSP chip and build a 5-axis vertical articulated robot control system. The 4-aixs controller uses a DSP, a high-speed AID and a D/A converter to implement advanced robot control algorithms. The robot control system uses VME-bus and VxWorks realtime multi-tasking operating system. We use RCCL type to implement robot languages.

  • PDF

A New Dynamic Analysis of 6-3 Stewart Platform Manipulator (6-3 스튜워트 플랫폼 운동장치의 운동방정식 해석)

  • Kim, Nak-In;Lee, Chong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1820-1828
    • /
    • 2001
  • The dynamics of the 6-3 Stewart platform manipulator (SPM) is newly derived based on the kinematic relations particularly developed fur the SPM. The essence of the analysis is to deal with three subsystems of the SPM, each consisting of the command and feedback line links associated with two joined neighboring actuators. The dynamics of the command and feedback line links are first formulated using Lagrange and Newton-Euler method and then combined to derive the dynamic equations of motion fur the SPM. The derived nonlinear equations of motion are so computationally effective that it can be easily applied to real-time high-speed tracking control of 6-3 SPM.

Effects of Vertical and Lateral Motion on Levitation Magnet System (상하 및 좌우진동이 부상용 전자석 시스템에 미치는영향)

  • 차귀수;배동진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.1
    • /
    • pp.18-23
    • /
    • 1992
  • Magnet core and rail of a magnetically levitated vehicle are usually made of highly conductive materials. Accordingly, eddy currents are induced in those members. Eddy currents often lead to a decrement of levitation and guidance force. This paper has calculated the decrement of both forces due to eddy current generated by magnet's vertical and lateral motion. U-shaped electromagnet and rail were chosen as amodel of 2D finite element analysis. Calculated results proved that both forces dropped significantly at high speed. Consequently, effects of eddy current should be considered in designing the magnet and control system.

  • PDF

Dynamic Interaction Analysis of Low, Medium and Super-high Speed Maglev and Guideways (열차-교량의 동적 상호작용을 고려한 중·저속 및 초고속 자기부상열차와 가이드웨이의 동특성 해석)

  • Min, Dong-Ju;Jung, Myung-Rag;Lee, Jun-Seok;Kim, Lee-Hyeon;Kim, Moon-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.1-9
    • /
    • 2011
  • The purpose of this study is to examine the dynamic characteristics of low, medium and high speed Maglev trains and guideways through dynamic interaction analysis. The coupled dynamic equations of motion for a vehicle of 10-dof and the associated guideway girders are developed by superposing vibration modes of the girder itself. The controller used in the UTM-01 Maglev vehicle is adopted to control the air gap between the bogie and guideway in this study. The effect of roughness, the guideway deflection-ratio and vehicle speed on the dynamic response of the maglev vehicle and guideway are then investigated using the 4th Runge-Kutta method. From the numerical simulation, it is found that the air gap increases with an increase of vehicle speed and the roughness condition. In particular, the dynamic magnification factor of the guideway girder is small at low and medium speeds, but the factor is noticeable at super-high speeds.

Experimental Study on Artificial Supercavitation of the High Speed Torpedo (고속 어뢰의 인공 초공동 특성에 대한 실험 연구)

  • Ahn, Byoung-Kwon;Jung, So-Won;Kim, Ji-Hye;Jung, Young-Rae;Kim, Sun-Bum
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.300-308
    • /
    • 2015
  • Recently supercavitating underwater torpedo moving at high speed (over 200 knots) has been interested for their practical advantage of the dramatic drag reduction. Cavitator located in front of the torpedo plays an important role to generate a natural supercavity and control the motion of the object. Supercavity can be created artificially by injection of compressed gas from the rear of the cavitator at a relatively low speed. In this paper, we investigated physical characteristics of artificial supercavities through cavitation tunnel experiments. One of the main focuses of the study was to measure pressure inside the cavity, and examined variation of the gravity effects appearing according to different amount of injected air. It was also found that a stable supercavity could be sustained at injection rates less than that required to form the stable supercavity because of hysteresis effect.

Development of the Hybrid Type Robot Using a Pneumatic Actuator For Physical Therapy Of Ankylosis (관절 경직 환자의 물리 치료를 위한 공압 구동형 하이브리드 로봇 개발)

  • 최현석;최철우;한창수;한정수
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.127-132
    • /
    • 2003
  • In this paper. the pneumatic service robot with a hybrid type is developed. A pneumatic has the advantages of good compliance , high Payload-to-weight and payload-to-volume ratios. high speed and force capabilities. Using pneumatic actuators. which have low stiffness. the service robot can guarantee safety. By suggesting a new serial-parallel hybrid type for the service robot which separates into Positioning motion and orienting motion, we can achieve large workspace and high strength-to-moving-weight ratio at the same time. A sliding mode controller can be designed for tracking the desired output using the Lyapunov stability theory and structural properties of pneumatic servo systems. Through many experiments of circular trajectory. the Pneumatic service robot is evaluated and verified.