Journal of Korean Society for Geospatial Information Science
/
v.17
no.1
/
pp.3-11
/
2009
This study aims at proposing that high resolution satellite images could be used to form an urban management plan by calculating the amount of green areas and detecting land use changes in each zoning region within urban planning jurisdiction of Jinju in Gyeongsangnam-do selected as a case study area, analysing imagery of IKONOS and KOMPSAT-2 that are high resolution satellite images. In conclusion, application possibilities of high resolution satellite images as assessment data of urban management administration that help to assess changes in each zoning region are indicated after developing modules based on ArcGIS for calculation and detection of green areas and land use changes and then analysing land use changes and spatial distribution of green areas by using those modules.
Surface reflectance, as a product of the absolute atmospheric correction process of low-orbit satellite imagery, is the basic data required for accurate vegetation analysis. The Commission on Earth Observation Satellite (CEOS) has conducted research and guidance to produce analysis-ready data (ARD) on surface reflectance products for immediate use by users. However, this trend is still in the early stages of research dealing with ARD for high-resolution multispectral images such as KOMPSAT-3A and CAS-500, as it targets medium- to low-resolution satellite images. This study first summarizes the types of distribution of ARD data according to existing cases. The link between Open Data Cube (ODC), the cloud-based satellite image application platforms, and ARD data was also explained. As a result, we present practical ARD deployment steps for high-resolution satellite images and several types of application models in the conceptual level for high-resolution satellite images deployed in ODC and cloud environments. In addition, data pricing policies, accuracy quality issue, platform applicability, cloud environment issues, and international cooperation regarding the proposed implementation and application model were discussed. International organizations related to Earth observation satellites, such as Group on Earth Observations (GEO) and Committee on Earth Observation Satellites (CEOS), are continuing to develop system technologies and standards for the spread of ARD and ODC, and these achievements are expanding to the private sector. Therefore, a satellite-holder country looking for worldwide markets for satellite images must develop a strategy to respond to this international trend.
It is well known that combining spatial and spectral information can improve land use classification from satellite imagery. High spatial resolution classification has a limitation when only using the spectral information due to the complex spatial arrangement of features and spectral heterogeneity within each class. Therefore, extracting the spatial information is one of the most important steps in high resolution satellite image classification. In this paper, we propose a new spatial feature extraction method. The extracted features are integrated with spectral bands to improve overall classification accuracy. The classification is achieved by applying a Support Vector Machines classifier. In order to evaluate the proposed feature extraction method, we applied our approach to KOMPSAT-2 data and compared the result with the other methods.
Change detection is a useful technology that can be applied to various fields, taking temporal change information with the comparison and analysis among multi-temporal satellite images. Especially, change detection that utilizes high-resolution satellite imagery can be implemented to extract useful change information for many purposes, such as the environmental inspection, the circumstantial analysis of disaster damage, the inspection of illegal building, and the military use, which cannot be achieved by lower middle-resolution satellite imagery. However, because of the special characteristics that result from high-resolution satellite imagery, it cannot use a pixel-based method that is used for low-resolution satellite imagery. Therefore, it must be used a feature-based algorithm based on the geographical and morphological feature. This paper presents the system that builds the change map by digitizing the boundary of the changed object. In this system, we can make the change map using manual or semi-automatic digitizing through the user interface implemented with a floating window that enables to detect the sign of the change, such as the construction or dismantlement, more efficiently.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.18
no.2
/
pp.209-216
/
2018
High-resolution satellite imagery is used in diverse fields such as meteorological observation, topography observation, remote sensing (RS), military facility monitoring and protection of cultural heritage. In satellite imagery, low-resolution imagery can take place depending on the conditions of hardware (e.g., optical system, satellite operation altitude, image sensor, etc.) even though the images were obtained from the same satellite imaging system. Once a satellite is launched, the adjustment of the imaging system cannot be done to improve the resolution of the degraded images. Therefore, there should be a way to improve resolution, using the satellite imagery. In this study, a super resolution (SR) algorithm was adopted to improve resolution, using such low-resolution satellite imagery. The SR algorithm is an algorithm which enhances image resolution by matching multiple low-resolution images. In satellite imagery, however, it is difficult to get several images on the same region. To take care of this problem, this study performed the SR algorithm by calibrating geometric changes on images after applying automatic extraction of feature points and projection transform. As a result, a clear edge was found just like the SR results in which feature points were manually obtained.
The availability of high-resolution satellite images provides precise information without direct observation of the research target. Korea Multi-Purpose Satellite (KOMPSAT), also known as the Arirang satellite, has been developed and utilized for earth observation. The machine learning model was continuously proven as a good classifier in classifying remotely sensed images. This study aimed to compare the performance of the support vector machine (SVM) model in classifying the land cover of the Delaware River port area on high and medium-resolution images. Three optical images, which are KOMPSAT-2, KOMPSAT-3A, and Sentinel-2B, were classified into six land cover classes, including water, road, vegetation, building, vacant, and shadow. The KOMPSAT images are provided by Korea Aerospace Research Institute (KARI), and the Sentinel-2B image was provided by the European Space Agency (ESA). The training samples were manually digitized for each land cover class and considered the reference image. The predicted images were compared to the actual data to obtain the accuracy assessment using a confusion matrix analysis. In addition, the time-consuming training and classifying were recorded to evaluate the model performance. The results showed that the KOMPSAT-3A image has the highest overall accuracy and followed by KOMPSAT-2 and Sentinel-2B results. On the contrary, the model took a long time to classify the higher-resolution image compared to the lower resolution. For that reason, we can conclude that the SVM model performed better in the higher resolution image with the consequence of the longer time-consuming training and classifying data. Thus, this finding might provide consideration for related researchers when selecting satellite imagery for effective and accurate image classification.
Compared to conventional high resolution acoustic profiling, ultra high resolution shallow acoustic profiling is limited in penetration, yet it provides resolution suitable for detailed seabed investigation in the shallow waters. Possible applications include search of buried pipeline, ship wrecks, and other artificial objects through the detailed mapping of thickness and structure of the upper sedimentary layers. In this study, contaminated sediments were discriminated by the correlation of ultra high resolution profiles with geologic data. In addition, the burial depth of submarine cable was measured by the interpretation of acoustic anomalies in the profiles.
We present quantitative estimations of changes in the areal extent of coral reef habitats at Weno Island, Micronesia, using high-spatial-resolution remote sensing images and field observations. Coral reef habitat maps were generated from Kompsat-2 satellite images for September 2008 and September 2010, yielding classifications with 78.6% and 72.4% accuracy, respectively, which is a relatively high level of agreement. The difference between the number of pixels occupied by each seabed type was calculated, revealing that the areal extent of living corals decreased by 8.2 percentage points between 2008 and 2010. This result is consistent with a comparison of the seabed types determined by field observations. This study can be used as a basis for remediation planning to diminish the impact of changes in coral reefs.
Ryu, K.;Oh, D.S.;Kim, S.J.;Kim, H.J.;Lee, J.J.;Shin, G.H.;Ko, D.H.;Min, K.W.;Hwang, J.A.
Journal of Astronomy and Space Sciences
/
v.24
no.2
/
pp.155-166
/
2007
We have designed a high resolution proton and electron telescope for the detection of high energy particles, which constitute a major part of the space environment. The flux of the particles, in the satellite orbits, can vary abruptly according to the position and solar activities. In this study, a conceptual design of the detector, for adapting these variations with a high energy resolution, was made and the performance was estimated. In addition, a parallel processing algorithm was devised and embodied using FPGA for the high speed data processing, capable of detecting high flux without losing energy resolution, on board a satellite.
With the increasing need for high temporal resolution satellite imagery for monitoring land surfaces, this study evaluated the temporal resolution of the NDVI composites from Geostationary Ocean Color Imager (GOCI) data. The GOCI is the first geostationary satellite sensor designed to provide continuous images over a $2,500{\times}2,500km^2$ area of the northeast Asian region with relatively high spatial resolution of 500 m. We used total 2,944 hourly images of the GOCI level 1B radiance data obtained during the one-year period from April 2011 to March 2012. A daily NDVI composite was produced by maximum value compositing of eight hourly images captured during day-time. Further NDVI composites were created with different compositing periods ranging from two to five days. The cloud coverage of each composite was estimated by the cloud detection method developed in study and then compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua cloud product and 16-day NDVI composite. The GOCI NDVI composites showed much higher temporal resolution with less cloud coverage than the MODIS NDVI products. The average of cloud coverage for the five-day GOCI composites during the one year was only 2.5%, which is a significant improvement compared to the 8.9%~19.3% cloud coverage in the MODIS 16-day NDVI composites.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.