• 제목/요약/키워드: high-resolution electron microscopy

검색결과 401건 처리시간 0.02초

Structural Studies of Respirasome by Cryo-Electron Microscopy

  • Jeon, Tae Jin;Kim, Ho Min;Ryu, Seong Eon
    • Applied Microscopy
    • /
    • 제48권4호
    • /
    • pp.81-86
    • /
    • 2018
  • The respiratory chain complex forms a supercomplex (SC) in the inner mitochondrial membrane. This complex facilitates the process of electron transfer to produce the proton gradient used to synthesize ATP. Understanding the precise structure of the SC is considered an important challenge. However, it has not yet been reported. The development of a Cryo-electron microscopy (EM) technique provides an effective way to obtain high-resolution micrographs to determine the high-resolution three-dimensional structure of biomolecules. In this brief review, the currently reported Cryo-EM structures of the mammalian respirasome have been described in order to establish a direction for further research in the respiratory system.

초저온 전자현미경법을 통한 고분해능 생물분자 구조분석 (High resolution structural analysis of biomolecules using cryo-electron microscopy)

  • 현재경
    • 진공이야기
    • /
    • 제4권4호
    • /
    • pp.18-22
    • /
    • 2017
  • Transmission electron microscopy (TEM) is a versatile and powerful technique that enables direct visualization of biological samples of sizes ranging from whole cell to near-atomic resolution details of a protein molecule. Thanks to numerous technical breakthroughs and monumental discoveries, 3D electron microscopy (3DEM) has become an indispensable tool in the field of structural biology. In particular, development of cryo-electron microscopy(cryo-EM) and computational image processing played pivotal role for the determination of 3D structures of complex biological systems at sub-molecular resolution. Here, basis of TEM and 3DEM will be introduced, especially focusing on technical advancements and practical applications. Also, future prospective of constantly evolving 3DEM field will be discussed, with an anticipation of great biological discoveries that were once considered impossible.

TEM sample preparation of microsized LiMn2O4 powder using an ion slicer

  • Jung Sik Park;Yoon‑Jung Kang;Sun Eui Choi;Yong Nam Jo
    • Applied Microscopy
    • /
    • 제51권
    • /
    • pp.19.1-19.7
    • /
    • 2021
  • The main purpose of this paper is the preparation of transmission electron microscopy (TEM) samples from the microsized powders of lithium-ion secondary batteries. To avoid artefacts during TEM sample preparation, the use of ion slicer milling for thinning and maintaining the intrinsic structure is described. Argon-ion milling techniques have been widely examined to make optimal specimens, thereby making TEM analysis more reliable. In the past few years, the correction of spherical aberration (Cs) in scanning transmission electron microscopy (STEM) has been developing rapidly, which results in direct observation at an atomic level resolution not only at a high acceleration voltage but also at a deaccelerated voltage. In particular, low-kV application has markedly increased, which requires a sufficiently transparent specimen without structural distortion during the sample preparation process. In this study, sample preparation for high-resolution STEM observation is accomplished, and investigations on the crystal integrity are carried out by Cs-corrected STEM.

Three-Dimensional Automated Crystal Orientation and Phase Mapping Analysis of Epitaxially Grown Thin Film Interfaces by Using Transmission Electron Microscopy

  • Kim, Chang-Yeon;Lee, Ji-Hyun;Yoo, Seung Jo;Lee, Seok-Hoon;Kim, Jin-Gyu
    • Applied Microscopy
    • /
    • 제45권3호
    • /
    • pp.183-188
    • /
    • 2015
  • Due to the miniaturization of semiconductor devices, their crystal structure on the nanoscale must be analyzed. However, scanning electron microscope-electron backscatter diffraction (EBSD) has a limitation of resolution in nanoscale and high-resolution electron microscopy (HREM) can be used to analyze restrictive local structural information. In this study, three-dimensional (3D) automated crystal orientation and phase mapping using transmission electron microscopy (TEM) (3D TEM-EBSD) was used to identify the crystal structure relationship between an epitaxially grown CdS interfacial layer and a $Cu(In_xGa_{x-1})Se_2$ (CIGS) solar cell layer. The 3D TEM-EBSD technique clearly defined the crystal orientation and phase of the epitaxially grown layers, making it useful for establishing the growth mechanism of functional nano-materials.

Sublimable materials facilitate the TEM sample preparation of oil-soluble nanomaterials

  • Yu-Hao Deng
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.21.1-21.3
    • /
    • 2020
  • Sample preparation is significantly important to the high-resolution transmission electron microscopy (HRTEM) characterization of nanomaterials. However, many general organic solvents can dissolve the necessary organic polymer support layer in TEM grid, which causes it difficult to obtain high-quality samples of oil-soluble nanomaterials. In this study, a new sample preparation method for oil-soluble nanomaterials has been developed by using the sublimable material as a transition layer. Experiments also show that there is no damage to TEM grids and high-quality HRTEM images can be obtained via this method. This approach paves the way to applicable HRTEM sample preparation of oil-soluble nanomaterials.

Biological applications of the NanoSuit for electron imaging and X-microanalysis of insulating specimens

  • Ki Woo Kim
    • Applied Microscopy
    • /
    • 제52권
    • /
    • pp.4.1-4.11
    • /
    • 2022
  • Field emission scanning electron microscopy (FESEM) is an essential tool for observing surface details of specimens in a high vacuum. A series of specimen procedures precludes the observations of living organisms, resulting in artifacts. To overcome these problems, Takahiko Hariyama and his colleagues proposed the concept of the "nanosuit" later referred to as "NanoSuit", describing a thin polymer layer placed on organisms to protect them in a high vacuum in 2013. The NanoSuit is formed rapidly by (i) electron beam irradiation, (ii) plasma irradiation, (iii) Tween 20 solution immersion, and (iv) surface shield enhancer (SSE) solution immersion. Without chemical fixation and metal coating, the NanoSuit-formed specimens allowed structural preservation and accurate element detection of insulating, wet specimens at high spatial resolution. NanoSuit-formed larvae were able to resume normal growth following FESEM observation. The method has been employed to observe unfixed and uncoated bacteria, multicellular organisms, and paraffin sections. These results suggest that the NanoSuit can be applied to prolong life in vacuo and overcome the limit of dead imaging of electron microscopy.

Nano-Resolution Connectomics Using Large-Volume Electron Microscopy

  • Kim, Gyu Hyun;Gim, Ja Won;Lee, Kea Joo
    • Applied Microscopy
    • /
    • 제46권4호
    • /
    • pp.171-175
    • /
    • 2016
  • A distinctive neuronal network in the brain is believed to make us unique individuals. Electron microscopy is a valuable tool for examining ultrastructural characteristics of neurons, synapses, and subcellular organelles. A recent technological breakthrough in volume electron microscopy allows large-scale circuit reconstruction of the nervous system with unprecedented detail. Serial-section electron microscopy-previously the domain of specialists-became automated with the advent of innovative systems such as the focused ion beam and serial block-face scanning electron microscopes and the automated tape-collecting ultramicrotome. Further advances in microscopic design and instrumentation are also available, which allow the reconstruction of unprecedentedly large volumes of brain tissue at high speed. The recent introduction of correlative light and electron microscopy will help to identify specific neural circuits associated with behavioral characteristics and revolutionize our understanding of how the brain works.

Stem cell behaviors on periodic arrays of nanopillars analyzed by high-resolution scanning electron microscope images

  • Jihun Kang;Eun-Hye Kang;Young-Shik Yun;Seungmuk Ji;In-Sik Yun;Jong-Souk Yeo
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.26.1-26.3
    • /
    • 2020
  • The biocompatible polyurethane acrylate (PUA) nanopillars were fabricated by soft lithography using three different sizes of nanobeads (350, 500, and 1000 nm), and the human adipose-derived stem cells (hASCs) were cultured on the nanopillars. The hASCs and their various behaviors, such as cytoplasmic projections, migration, and morphology, were observed by high resolution images using a scanning electron microscope (SEM). With the accurate analysis by SEM for the controlled sizes of nanopillars, the deflections are observed at pillars fabricated with 350- and 500- nm nanobeads. These high-resolution images could offer crucial information to elucidate the complicated correlations between nanopillars and the cells, such as morphology and cytoplasmic projections.