• 제목/요약/키워드: high-manganese steel

검색결과 83건 처리시간 0.026초

탄-소성 손상모델을 활용한 고망간강의 인장거동 모사에 관한 연구 (Non-linear tensile behavior of high manganese steel based on elasto-plastic damage model)

  • 김종환;이정호;김슬기;전민성;이제명
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제41권3호
    • /
    • pp.222-229
    • /
    • 2017
  • 고망간강은 저온환경에서 강도 및 내구성 측면에서 우수한 기계적 성질을 가지고 있다. 최근 고망간강은 우수한 강도와 내구성을 바탕으로 LNG 화물창내에서 사용되는 SUS강, 니켈강의 대체재로 고려되고 있다. 이러한 연구의 일환으로, 본 연구에서는 고망간강의 기계적 물성치와 비선형 거동을 조사하기 위해 상온/극저온(-110K)에서 인장시험을 수행하였다. 또한 재료의 거동을 모사하기 위해 수정된 탄-소성 손상모델을 ABAQUS가 제공하는 사용자지정 재료 서브루틴(UMAT)에 유한요소 정식화과정을 거쳐 탑재하였다. 마지막으로 UMAT을 적용한 유한요소해석을 수행하였고 제안된 UMAT의 유효성 검증을 위해 해석결과를 인장시험 결과와 비교하였다. 그 결과, 제안된 UMAT은 고망간강의 비선형 거동을 효과적으로 모사함을 확인하였다.

고망간 오스테나이트계 강판의 자동차 부품 적용성 연구 (A Study on the Application of High Manganese Austenitic Steel Sheet to Automobile Parts)

  • 정연일;채수홍;김소연;홍승현;임종대
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.393-396
    • /
    • 2009
  • The mechanical properties, press formability and texture of a TWIP steel were investigated. This steel combines both high strength and high ductility due to so called TWIP effect which are related to the microstructural changes. The formation of twins during deformation leads to an increase of its mechanical properties. In this study, the texture and mechanical properties evolutions of a TWIP steel subjected to tensile tests and press trials at room temperature were investigated in relation to the feasibility of the application to automotive body parts.

  • PDF

극저온용 오스테나이트계 Fe-30Mn-0.2C(-1.5Al) 고망간강의 수소 취화 특성 (Hydrogen Embrittlement Properties of Austenitic Fe-30Mn-0.2C(-1.5Al) High-Manganese Steels for Cryogenic Applications)

  • 이상인;이지민;황병철
    • 열처리공학회지
    • /
    • 제31권6호
    • /
    • pp.283-289
    • /
    • 2018
  • This present study deals with the hydrogen embrittlement properties of austenitic Fe-30Mn-0.2C(-1.5Al) high-manganese steels for cryogenic applications. They were electrochemically charged with hydrogen and then subjected to tensile tests for evaluating hydrogen embrittlement behavior. Tensile test results showed that after hydrogen charging the tensile strength and elongation of the Al-free steel were more remarkably decreased with increasing current density when compared to the Al-added steel. After hydrogen charging of the Al-added steel, it was found that the measured hydrogen content was small and silver particles were relatively less decorated. Therefore, the Al-added steel has a superior hydrogen embrittlement resistance to the Al-free steel because the addition of Al suppresses the injection of hydrogen during electrochemical hydrogen charging.

망간크로싱과 레일의 플래시버트 용접 기술 개발 (Joint technology between Manganese crossing and rail by Flash Butt Welding)

  • 권호진;김순철;최인석;이보영
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(II)
    • /
    • pp.163-169
    • /
    • 2003
  • In order to develop domestic railway technology, it is necessary that manufacturing technology of turnout should be kept up with update level, because turnout is the core component of high speed railway. Manganese crossing made of high manganese alloy steel is a important component of turnout. So far, this could not have been welded with rail steel due to metallic problem in Korea. However, joint technology hereunder between manganese crossing and rail by using Flash Butt Welding which is developed by Kangwon Railtech Co., Ltd is the state of the art and enable to realize rail continuousness in turnout section, speed up train velocity, reduce maintenance cost, and enhance riding quality.

  • PDF

고 Mn 오스테나이트계 스테인리스강의 기계적 성질에 미치는 역변태의 영향 (Effect of Reverse Transformation on the Mechanical Properties of High Manganease Austenitic Stainless Steel)

  • 강창룡;허태영
    • 대한금속재료학회지
    • /
    • 제50권6호
    • /
    • pp.413-418
    • /
    • 2012
  • This study was carried out to investigate the effect of reverse transformation on the mechanical properties in high manganese austenitic stainless steel. Over 95% of the austenite was transformed to deformation-induced martensite by 70% cold rolling. Reverse transformation became rapid above an annealing temperature of $550^{\circ}C$, but there was no significant transformation above $700^{\circ}C$. In addition, with an increasing annealing time at $700^{\circ}C$, reverse transformation was induced rapidly, but the transformation was almost completed at 10 min. There was a rapid decrese in strength and hardness with annealing at temperature above $550^{\circ}C$, while elongation increased rapidly above $600^{\circ}C$. At $700^{\circ}C$, hardness and strength decreased rapidly, and elongation increased steeply with an increasing reverse treatment time up to 10 min, whereas there were no significant change with a treatment time after 10 min. The reverse-transformed austenite showed an ultra-fine grain size less than $0.2{\mu}m$, which made it possible to strengthen the high manganese austenitic stainless steel.

스테인레스 강 용접중 발생하는 망간의 발생량 및 함량변화에 관한 연구 (Generation Rate and Content Variation of Manganese in Stainless Steel Welding)

  • 윤충식;김정한
    • 한국산업보건학회지
    • /
    • 제16권3호
    • /
    • pp.254-263
    • /
    • 2006
  • Manganese has a role as both toxic and essential in humans. Manganese is also an essential component in the welding because it increases the hardness and strength, prevents steel from cracking of welding part and acts as a deoxidizing agent to form a stable weld. In this study, manganese generation rate and its content was determined in flux cored arc welding on stainless steel. Domestic two products and foreign four products of flux cored wires were tested in the well designed fume generation chamber as a function of input power. Welding fume was measured by gravimetric method and metal manganese was determined by inductively coupled plasma-atomic emission spectrophotometer. The outer shell of the flux cored wire tube and inner flux were analyzed by scanning electron microscopy to determine their metal compositions. Manganese generation rate($FGR_{mn}$) was increased as the input power increased. It was 16.3 mg/min at the low input power, 38.1 mg/min at the optimal input power, and up to 55.4 mg/min at the high input power. This means that $FGR_{mn}$ is increased at the work place if welder raise the current and/or voltage for the high productivity. The slope coefficient of $FGR_{mn}$ was smaller than that of the generation rate of total fume(FGR). Also, the correlation coefficient of $FGR_{mn}$ was 0.65 whereas that of FGR is 0.91. $FGR_{mn}$ was equal or higher in the domestic products than that of the foreign products although FGR was similar. From the electron microscopic analytical data, we concluded that outer shell of the wire was composed mainly of iron, chromium, nickel and less than 1.2 % of manganese. There are many metal ingredients such as iron, silica, manganese, zirconium, titanium, nickel, potassium, and aluminum in the inner flux but they were not homogeneous. It was found that both $FGR_{mn}$ and content of manganese was higher and more varied in domestic flux cored wires than those of foreign products. To reduce worker exposure to fumes and hazardous component at the source, further research is needed to develop new welding filler materials that improve the quality of flux cored wire in respect to these points. Welder should keep in mind that the FGR, $FGR_{mn}$ and probably the generation rate of other hazardous metals were increased as the input power increase for the high productivity.

고속철도 분기기용 강의 피로균열 진전거동 (Fatigue Crack Growth Behavior of Steel for High Speed Rail Crossing)

  • 최성대;남정학;이종형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.205-210
    • /
    • 2001
  • Fatigue crack growth tests were carried out using high manganese cast steel under constant amplitude loading. Average crystal grain sizes of the material are $200{\mu}m$ and $1000{\mu}m$. For this material, ${\Delta}K_{th}$ is about $8MPa{\sqrt{m}}$ which is quiet large as compared to the general structural steels and the crack growth rate is lower than the general structural steels especilly in the low ${\Delta}K$ regsion. The reason of this behavior is crack closure due to fracture surface roughness and fretting oxide. The relationship between da/dN and the ${\Delta}K_{eq}$ was represented by narrow band regardless of the stress ratio.

  • PDF

고장력 냉연강판에서 미세조직에 대한 연속어닐링조건의 영향 (Effects of Continuous Annealing Parameters on Microstructures in a Cold-Rolled High Strength Steel)

  • 정우창
    • 열처리공학회지
    • /
    • 제17권5호
    • /
    • pp.283-292
    • /
    • 2004
  • The effects of the annealing parameters on microstructures were examined in a cold-rolled high strength steel containing 0.1% C, 0.5% Si, 1.5% Mn, and 0.04% Nb. It was impossible to avoid martensite in the microstructure even though the continuous annealing parameters were controlled. This indicates that the alloying elements such as silicon and manganese contributing to manganese equivalent($Mn_{eq}$) should be reduced to produce the ferrite-pearlite microstructure for the solid solution and precipitation hardened steel. It was found that a decrease in the rapid cooling temperature to $520^{\circ}C$ was effective to change the microstructure from ferrite-martensite to ferrite-pearlite-martensite. Typical dual-phase properties exhibiting a low yield ratio and a continuous yielding behavior were obtained when the rapid cooling temperature was in the range of $680^{\circ}C$ to $600^{\circ}C$. The critical volume fraction of martensite for the typical properties of dual-phase steel was about 11 percent.

조선업 용접작업자의 공기 중 총 망간 및 입경별 망간 농도와 혈중 망간농도에 관한 연구 (A Study on the Total, Particle Size-Selective Mass Concentration of Airborne Manganese, and Blood Manganese Concentration of Welders in a Shipbuilding Yard)

  • 박종수;김판기;정지연
    • 한국산업보건학회지
    • /
    • 제25권4호
    • /
    • pp.472-481
    • /
    • 2015
  • Objectives: Welding is a major task in shipbuilding yards that generates welding fumes. A significant amount of welding in shipbuilding yards is done on steel. Inevitably, manganese is present in the base metals being joined and the filler wire being used and, consequently, in the fumes to which workers are exposed. The objective of this work was to characterize manganese exposure associated with work area, total and particle size-selective mass concentration, and compare the mass concentrations obtained using a three-piece cassette sampler, size-selective impactor sampler and blood manganese concentrations. Materials: All samples were collected from the main work areas at one shipbuilding yard. We used a three piece cassette sampler and the eight stage cascade impactor sampler for the airborne manganese mass concentration of total and all size fractions, respectively. In addition, we used the results of health examination of workers sampled for airborne manganese. Results: The oder of high concentration of airborne manganese in shipbuilding processes was as follows; block assembly, block erection, outfitting installation, steel cutting, and outfitting preparation. The percentages of samples that exceeded the OES of the ministry of employment and labor by the cassette sampling method was 12.5%, however 59.1% of sampled workers by the impactor sampling method exceeded the TLV of the ACGIH. Conclusions: Even though the manganese concentrations in blood of workers exposed to higher airborne manganese concentration were higher than among those exposed to lower concentrations, there was no difference in blood manganese concentrations among work duration. The data analyzed here by characterizing size-selective mass concentrations indicates that the inhaled manganese of welders in shipbuilding yards could be mostly manganese-containing respirable particle sizes.

Fe-25Mn-1.5Al-0.5C강의 고온 산화 거동과 표면 결함 (High Temperature Oxidation Behavior and Surface Defect in Fe-25Mn-1.5Al-0.5C Steel)

  • 박신화;홍순택;김태웅;정인상
    • 열처리공학회지
    • /
    • 제13권3호
    • /
    • pp.158-162
    • /
    • 2000
  • The high temperature oxidation behavior and the surface defect in Fe-25Mn-1.5A1-0.5C steel was investigated by XRD (X-ray Diffractin) and electron microscopy. The intra- and inter-granular oxides were formed by the selective oxidation of manganese and aluminum, which were identified to MnAl2O4 phase. Aluminum nitride (AlN) was formed in front of these oxides. The ${\gamma}$-matrix was transformed to ${\alpha}$- and ${\varepsilon}$- phases by the selective oxidation of manganese. The surface defect, micro-scab was induced by the difference of the high temperature ductility between the matrix and the inter-granular oxide.

  • PDF