• Title/Summary/Keyword: high-flow plain

Search Result 76, Processing Time 0.029 seconds

Thermohydrodynamic Bubbly Lubrication Analysis of High-Speed Journal Bearing (공기 혼합오일에 대한 고속 저어널 베어링 열유체 윤활 해석)

  • 전상명
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.321-334
    • /
    • 2001
  • The influence of aerated oil on high-speed journal bearing Is examined by thermohydrodynamic lubrication theory to lubrication with mixtures of a Newtonian liquid and an ideal gas. For this purpose, analytical models for viscosity and density of aerated oil in fluid-film bearing are applied. Convection to the walls, mixing with supply oil and re-circulating oil, and some degree of journal misalignment are considered. The results show that deliberate oil aeration can increase the load capacity of high-speed plain Journal bearing. And the load capacity is increased more by oil aeration under the conditions of shaft misalignment and higher speed.

Setting and mechanical Properties of Cement Mortar Useing Retarding Agents (응결지연성 혼화제를 이용한 시멘트 모르터의 응결 및 역학적 특성)

  • 심보길;김상우;윤치환;한민철;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.89-92
    • /
    • 2000
  • In this paper, setting and mechanical properties of cement mortar using retarding agents are investigated. According to the experimental results, as dosage of retarding agents increases, flow and ar content of mortar are shown to be higher. Flow loss of mortar using retarding type water reducing agents is larger than that using gluconic acid by 3 times. As for setting time it is found that mortar using gluconic acid takes much longer setting time than that using retarding type water reducing agent. In case of compressive strength, when retarding agent is applied, cement mortar gains high strength compared with that of plain mortar. However, we can not measure compressive strength of cement mortar contaning more than 0.6% of gluconic acid.

  • PDF

Leakage and Rotordynamic Analysis for Staggered-Labyrinth Gas Seal (엇갈린 래버린스 실의 누설량 및 동특성 해석)

  • Ha, Tae-Woong
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.24-33
    • /
    • 2002
  • The basic equations are derived for the analysis of a staggered labyrinth gas seal which are generally used in high performance compressors and steam turbines. The Bulk-flow is assumed for a single cavity control volume and the flow is assumed to be completely turbulent in circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the single cavity control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the staggered labyrinth gas seal. Theoretical results of leakage and rotordynamic characteristics for the staggered labyrinth gas seal are compared with those of the plain seal and see-through labyrinth seal.

Temperature Dependency Affecting the Properties at Early Age of the Concrete Containing High Volume Blast Furnace Slag (고로슬래그 미분말을 다량 치환한 콘크리트의 초기품질에 미치는 온도의존성)

  • Han, Cheon-Goo;Lee, Jang-Hwa;Koh, Kyung-Taek;Han, Min-Cheol;Lee, Ju-Sun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.74-80
    • /
    • 2009
  • This study analysis the fundamental properties of temperature-dependence corresponding the change of curing temperature classified by the replacement ratio of BS, and the results are summarized as following. As the properties of flow, plain satisfied with the target slump, and as the replacement ratio of BS increased, the flow increased, but the air content slightly decreased. The time of set delayed as the replacement ratio of BS increased, but the curing temperature $35^{\circ}C$, even with 80% BS replaced concrete, the time of set was faster than $5^{\circ}C$, $20^{\circ}C$ plain, so the temperature-dependence was much greater. The compressive strength was decreased as the replacement ratio of BS increased, especially as the curing temperature lower, the compressive strength was lower comparatively. Also as the age increased, the plain developed more strength, therefore it show the temperature-dependence is much larger.

  • PDF

A Study on Flow Characteristics according to Meandering Low Flow Channel Shape in the Compound Cross Section Typed Straight Channel (복단면인 직선수로 내 사행 저수로의 형태에 따른 흐름특성 연구)

  • Kim, Seonghwan;Choi, Gyewoon
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.484-490
    • /
    • 2017
  • In order to examine flow characteristics according to the shape of the meandering low flow channel in the compound cross section typed straight channel, we assumed the representative channel type in Korea and confirmed the validity of the 3D numerical simulation by carrying out the hydraulic model. Based on this study, numerical simulations were also conducted on other types of river channel. As a result of the numerical model test (using the velocity value measured by the water depth observation from the hydraulic model test), it was confirmed that the numerical simulation results are in good agreement with the numerical simulation results. As a result of analyzing the flow field according to the changes in the shape of the low flow channel, it was confirmed that the secondary flow examined in the previous studies occurred. Also, it was confirmed that the maximum flow velocity point moves according to the expansion cross sectional area of flow in high flow plain. Ultimately, it is thought that it is necessary to understand the position of the water impingement (which is an important factor in river design) and the extent of the impact because the change of the channel width affects the flow.

Experimental Study on the Material Properties of High Strength Concrete with Hollow Glass Powder (유공유리분말 혼입 고강도 콘크리트의 물성에 관한 실험적 연구)

  • Yoon, Seob;Lee, Han-Yong;Seo, Tae-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.4
    • /
    • pp.313-319
    • /
    • 2020
  • In this study, in order to confirm the applicability of Hollow Glass Powder(HGP) in 70MPa-class high strength concrete, the fresh and hardened states were examined according to the amount of HGP, and the results are as follows. The flow characteristics showed that the slump flow increased slightly as the amount of HGP was increased, and the T500 was slightly shortened as the amount of HGP was increased, and the rebar passing ability was improved due to the ball bearing effect of HGP. In particular, it showed the best rebar passing ability at a usage of 1.0kg/㎥. The use of HGP 1.0kg/㎥ resulted in a 40% reduction in plastic viscosity, but the viscosity increased at 2.0kg/㎥. Through experiments, it was confirmed that HGP was helpful in improving the workability of high-strength concrete, and the usage of 1.0kg/㎥ is considered to be the most appropriate. It was confirmed that HGP does not affect concrete compressive strength.

Experimental Study of Spray Characteristics of Liquid jet in Cross-flow (횡단류를 이용한 액체제트의 분무 및 분열 특성 실험)

  • Ko Jung-Bin;Lee Kwan-Hyung;Moon Hee-Jang;Koo Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.155-158
    • /
    • 2005
  • The spray characteristics of liquid jet minted in subsonic cross-flow were investigated numerically and experimentally. The behaviors of column, penetration and breakup of plain liquid jet in non-swirling cross-flow of air have been studied. Numerical and physical models are based on a modified KIVAII code. The primary atomization is represented by a wave model based on the KH(Kelvin-Helmholtz) instability that is generated by a high interface relative velocity between the liquid and gas flows. CCD camera has been utilized in oder to capture the spray trajectory. The nozzle diameter was 0.5 mm and its L/D ratios were between 1 and 5. Numerical and experimental results indicate that the breakup point is delayed by increasing gas momentum ratio, the penetration decreases by increasing Weber number and the turbulent or nonturbulent liquid jet is obtained at different L/D ratio.

  • PDF

Genesis of Researches on Surges in Pumping Systems in Japan

  • Yamaguchi, Nobuyuki;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.17-27
    • /
    • 2016
  • Researches on the mechanism of surging and the surge behaviors in the systems of pumps, or fans or compressors, and the effects of flow-paths had been initiated and had made a great progress in Japan in the decades from the nineteen-forties to the nineteen-sixties. In 1947, the essential cause of the surges, i.e., self-excited oscillation nature of the flow-system, was discovered analytically by Professor Sumiji Fujii of Tokyo University, and most of the characteristic behaviors of the phenomena had been explained clearly. Successive studies by many other Japanese researchers continued to prove experimentally the mechanism, to extend the analytical studies, and to attempt preventing surge occurrence, etc. in the following two decades. The historical information on the early surge studies could be helpful to some concerned people. At the same time, the basic and plain ways of discussions and reasoning about the phenomena in the pioneering researches could give us much to be learned even in the present time of high-power computing systems. Regrettably, many of the original research works have been published only in Japanese. The present review introduces very briefly the situations in memories of the pioneering researchers and engineers.

Analysis of Hydraulic Characteristics of Flood Plain Using Two-Dimensional Unsteady Model (2차원 부정류 모형을 이용한 둔치의 수리특성 분석)

  • Ku, Young Hun;Song, Chang Geun;Kim, Young Do;Seo, Il Wo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.997-1005
    • /
    • 2013
  • Since the cross-sectional shape of the Nakdong river is compound type, the water stage rises up to the top of the flood plane, as the flow discharge increases during the extreme rain storm in summer. The recent increase of rainfall intensity and flood frequency results in the immersions of parks and hydrophilic facilities located in the flood plain. Therefore it is necessary to analyze the hydraulic characteristics evolved by the extreme rain storm in the flood plain. The study reach ranging from the Gangjeong Goryeong Weir and the Dalseong Weir, where several hydraulic facilities are located along the channel, was selected and numerical simulations were conducted for 42 hours including the peak flood of the typhoon Sanba. The 2-D transient model, FaSTMECH was employed and the accuracy of the model was assessed by comparing the water level between the simulation results and the measured ones at a gauging station. It showed a high correlation with $R^2$ of 0.990, AME of 0.195, and RMSE of 0.252. In addition, the inundation time, the inundation depth, the inundation velocity, and the shear stress variation in the flood plain facilities were analyzed.

A Numerical Simulation Study of a Heavy Rainfall Event over Daegwallyeong on 31 July 2014 (2014년 7월 31일 대관령에서 발생한 집중호우에 관한 수치모의 연구)

  • Choi, Seung-Bo;Lee, Jae Gyoo
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.159-183
    • /
    • 2016
  • On 31 July 2014, there was a localized torrential rainfall ($58.5mm\;hr^{-1}$) caused by a strong convective cell with thunder showers over Daegwallyeong. In the surface synoptic chart, a typhoon was positioned in the East China Sea and the subtropical high was expanded to the Korean peninsula. A WRF (Weather Research and Forecasting) numerical simulation with a resolution of 1 km was performed for a detailed analysis. The simulation result showed a similar pattern in a reflectivity distribution particularly over the Gangwon-do region, compared with the radar reflectivity. According to the results of the WRF simulation, the process and mechanism of the localized heavy rainfall over Daegwallyeong are as follows: (1) a convective instability over the middle part of the Korean peninsula was enhanced due to the low level advection of warm and humid air from the North Pacific high. (2) There was easterly flow from the coast to the mountainous regions around Daegwallyeong, which was generated by the differential heating of the insolation among Daegwallyeong and the Yeongdong coastal plain, and nearby coastal waters. (3) In addition, westerly flow from the western part of Daegwallyeong caused a strong convergence in this region, generating a strong upward motion combined by an orographic effect. (4) This brought about a new convective cell over Daegwallyeong. And this cell was more developed by the outflow from another thunderstorm cell to the south, and finally these two cells were merged to develop as a strong convective cell with thunder showers, leading to the record breaking maximum rainfall per hour ($58.5mm\;hr^{-1}$) in July.