• Title/Summary/Keyword: high-energy density science

Search Result 675, Processing Time 0.033 seconds

Effect of n-type Dopants on CoSb3 Skutterudite Thermoelectrics Sintered by Spark Plasma Sintering (Spark Plasma Sintering 법으로 제조한 CoSb3 Skutterudite계 열전소재의 n형 첨가제 효과)

  • Lee, Jae-Ki;Choi, Soon-Mok;Lee, Hong-Lim;Seo, Won-Seon
    • Korean Journal of Materials Research
    • /
    • v.20 no.6
    • /
    • pp.326-330
    • /
    • 2010
  • $CoSb_3$ Skutterudites materials have high potential for thermoelectric application at mid-temperature range because of their superior thermoelectric properties via control of charge carrier density and substitution of foreign atoms. Improvement of thermoelectric properties is expected for the ternary solid solution developed by substitution of foreign atoms having different valances into the $CoSb_3$ matrix. In this study, ternary solid solutions with a stoichiometry of $Co_{1-x}Ni_xSb_3$ x = 0.01, 0.05, 0.1, 0.2, $CoSb_{3-y}Te_y$, y = 0.1, 0.2, 0.3 were prepared by the Spark Plasma Sintering (SPS) system. Before the SPS synthesis, the ingots were synthesized by vacuum induction melting and followed by annealing. For phase analysis X-ray powder diffraction patterns were checked. All the samples were confirmed as single phase; however, with samples that were more doped than the solubility limit some secondary phases were detected. All the samples doped with Ni and Te atoms showed a negative Seebeck coefficient and their electrical conductivities increased with the doping amount up to the solubility limit. For the samples prepared by SPS the maximum value for dimensionless figure of merit reached 0.26, 0.42 for $Co_{0.9}Ni_{0.1}Sb_3$, $CoSb_{2.8}Te_{0.2}$ at 690 K, respectively. These results show that the SPS method is effective in this system and Ni/Te dopants are also effective for increasing thermoelectric properties of this system.

Numerical Study on Wind Resources and Forecast Around Coastal Area Applying Inhomogeneous Data to Variational Data Assimilation (비균질 자료의 변분자료동화를 적용한 남서해안 풍력자원평가 및 예측에 관한 수치연구)

  • Park, Soon-Young;Lee, Hwa-Woon;Kim, Dong-Hyeok;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.19 no.8
    • /
    • pp.983-999
    • /
    • 2010
  • Wind power energy is one of the favorable and fast growing renewable energies. It is most important for exact analysis of wind to evaluate and forecast the wind power energy. The purpose of this study is to improve the performance of numerical atmospheric model by data assimilation over a complex coastal area. The benefit of the profiler is its high temporal resolution and dense observation data at the lower troposphere. Three wind profiler sites used in this study are inhomogeneously situated near south-western coastal area of Korean Peninsula. The method of the data assimilation for using the profiler to the model simulation is the three-dimensional variational data assimilation (3DVAR). The experiment of two cases, with/without assimilation, were conducted for how to effect on model results with wind profiler data. It was found that the assimilated case shows the more reasonable results than the other case compared with vertical observation and surface Automatic Weather Station(AWS) data. Although the effect of sonde data was better than profiler at a higher altitude, the profiler data improves the model performance at lower atmosphere. Comparison with the results of 4 June and 5 June suggests that the efficiency with hourly assimilated profiler data is strongly influenced by synoptic conditions. The reduction rate of Normalized Mean Error(NME), mean bias normalized by averaged wind speed of observation, on 4 June was 28% which was larger than 13% of 5 June. In order to examine the difference in wind power energy, the wind power density(WPD) was calculated and compared.

Low-Cycle Fatigue Life Prediction in GTD-111 Superalloy at Elevated Temperatures (초내열합금 GTD-111의 고온 저주기피로 수명예측)

  • Yang, Ho-Young;Kim, Jae-Hoon;Yoo, Keun-Bong;Lee, Han-Sang;You, Young-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.753-758
    • /
    • 2011
  • The Ni-base super-heat-resistant alloy, GTD-111, is employed in gas turbines because of its high temperature strength and oxidation resistance. It is important to predict the fatigue life of this superalloy in order to improve the efficiency of gas turbines. In this study, low-cycle fatigue tests are performed as variables of total strain range and temperature. The relationship between the strain energy density and number of cycles to failure is examined in order to predict the low-cycle fatigue life of the GTD-111 superalloy. The fatigue life predicted by using the strain-energy methods is found to coincide with that obtained from the experimental data and from the Coffin-Manson method.

Isotopic Differences among Zooplankton Taxa and Seasonal Variation of Zooplankton Community Coexisting with Microcystis (Microcystis와 공존하는 동물플랑크톤 군집의 계절변화 및 안정동위원소비의 차이)

  • Lee, Jae-Yong;Kim, Jai-Iu;Jung, Yu-Kyong;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • We used stable isotope analysis to investigate the hypothesis that zooplankton were not able to utilize Microcystis as a food source. We also studied seasonal variation of the zooplankton community in a eutrophic Wangsong reservoir. The dominant copepod species changed from Cyclops vicinus to Thermocyclops taihokuensis. Density of zooplankton was suppressed by high density of Microcystis in June and the density of phytoplankton and chlorophyll a concentration was lowest in July. The difference in $\delta^{13}C$ and $\delta^{15}N$ between cladocerans (Daphnia galeata and Bosmina longirostris) and copepods showed the maximum difference of $12^{\circ}/_{\circ\circ}$ and $4^{\circ}/_{\circ\circ}$, respectively, indicating different energy sources and trophic positions between two taxonomic groups. The difference in $\delta^{13}C$ between Microcystis and zooplankton ranged from $3{\sim}7^{\circ}/_{\circ\circ}$, supporting the hypothesis that Microcystis could not be used as food source of zooplankton.

Calculation of the Correction Factors related to the Diameter and Density of the Concrete Core Samples using a Monte Carlo Simulation (몬테카를로 전산해석을 이용한 콘크리트 코어시료의 직경과 밀도에 따른 보정인자 계산)

  • Lee, Kyu-Young;Kang, Bo Sun
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.503-510
    • /
    • 2020
  • Concrete is one of the most widely used materials as the shielding structures of a nuclear facilities. It is also the most generated radioactive waste in quantity while dismantling facilities. Since the concrete captures neutrons and generates various radionuclides, radiation measurement and analysis of the sample was fulfilled prior to dismantle facilities. An HPGe detector is used in general for the radiation measurement, and effective correction factors such as geometrical correction factor, self-absorption correction, and absolute detector efficiency have to be applied to the measured data to decide exact radioactivity of the sample. Correction factors are obtained by measuring data using a standard source with the same geometry and chemical states as the sample under the same measurement conditions. However, it is very difficult to prepare standard concrete sources because concrete is limited in pretreatment due to various constituent materials and high density. In addition, the concrete sample obtained by core drill is a volumetric source, which requires geometric correction for sample diameter and self absorption correction for sample density. Therefore in recent years, many researchers are working on the calculation of effective correction factors using Monte carlo simulation instead of measuring them using a standard source. In this study we calculated, using Geant4, one of the Monte carlo codes, the correction factors for the various diameter and density of the concrete core sample at the gamma ray energy emitted from the nuclides 152Eu and 60Co, which are the most generated in radioactive concrete.

Review of the Research and Development of Ceramic Matrix Composite Materials and Future Works (세라믹 매트릭스 복합재료 연구 개발 동향 및 전망)

  • Lee, Tae Ho
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.123-129
    • /
    • 2014
  • Ceramic matrix composites (CMCs) consist of such reinforcements as carbides, nitrides, borides and oxides, which have high melting points, low density, high modulus and high strength, for the purpose of increasing toughness. These materials are used for heat shielding systems for aerospace vehicles, high-temperature gas turbine combustion chambers, turbine blades, stator vane parts, etc. Oxide CMCs are used for the components of burner and flame holder and the high-temperature gas duct. CMCs are also applied to brake disks, which are subjected to severe thermal shock, and slide bearing parts under heavy loads. The research and development of the CMC are progressed for the strategic purpose in defense and energy industry; for instance, for aerospace applications in the U.S., and for hyper-speed aircraft, gas turbines, and atomic fissions in U.S., Japan, and Europe.

Lewis Acid Degradation Characteristics of Perfluoropolyethers Derivatives (퍼프로로폴리에테르 유도체의 루이스 산 분해특성)

  • Chun, Sang-Wook;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.650-655
    • /
    • 2014
  • The degradation characteristics of perfluoropolyether (PFPE) derivatives currently being used as computer hard disk lubricants have been investigated. Especially, we considered the effects of end group on degradation behavior of PFPE derivatives. It was found that the degradation of PFPE derivatives in the presence of $Al_2O_3$ involves two degradation mechanisms such as thermal degradation and Lewis acid disproportionation by $AlF_3$ which was mainly formed by oxide-to-halide reaction between $Al_2O_3$ and the degraded PFPE. The end groups were strongly related to Lewis acid disproportionation of PFPE derivatives, and it is due to the difference of electron donating ability in the each end groups. Even if PFPE derivatives have same repeating unit in the main chain, Lewis acid disproportionation was prohibited by higher electron donating ability by the end group which caused the high electron density at the acetal group in the repeating unit.

Analyses on Fine Structure and Electronic Structure of Cr-doped Li4Ti5O12 by Using X-ray Absorption Spectroscopy and First Principle Calculation (X-선 흡수실험 및 제일원리계산을 통한 Cr-doped Li4Ti5O12의 미세구조 및 전자구조 해석)

  • Song, Han-Nah;Kim, Hyung-Sun;Cho, Byung-Won;Kim, Yong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.1
    • /
    • pp.33-37
    • /
    • 2011
  • $Li_4Ti_5O_{12}$ has been considered a potential material for high power lithium batteries. Since $Li_4Ti_5O_{12}$ is however an insulator having a broad band gap, various methods have been employed to improve the conductivity. In this study, we have investigated the change of fine structure and electronic structure by Cr doping using X-ray absorption spectroscopy and First Principle Calculation. Doping with Cr, we could obtain an enhanced electronic conductivity by locating the Fermi level at the center position of Cr d-band and identify the change of XANES pre-edge and white line peak due to the increase of electron density of Ti d-band.

Growth and UV Emission of Preferred Oriented ZnO Nanowires Using Hydrothermal Process (수열합성법을 이용하여 우선 배향된 ZnO 나노와이어 성장 및 발광 특성)

  • Kim, Jong-Hyun;Lim, Yun-Soo;Kim, Sung-Hyun;Jo, Jin-Woo;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.660-665
    • /
    • 2011
  • 1-D ZnO nanowires have been attractive for their peculiar properties and easy growth at relatively low temperature. The length, diameter, and density of ZnO nanowires were determined by the several synthetic parameters, such as PEI concentration, growth time, temperature, and zinc salt concentration. The ZnO nanowires were grown on the <001> oriented seed layer using the hydrothermal process with zinc nitrate and HMTA (hexamethylenetetramine) and their structure and optical properties were characterized. The morphology, length and diameter of the nanowires were strongly affected by the relative and/or absolute concentration of $Zn^{2+}$ and $OH^{-1}$ and the hydrothermal temperature. When the concentrations of the zinc nitrate HMTA were the same as 0.015 M, the length and diameter of the nanowires were $1.97{\mu}m$ and $0.07{\mu}m$, respectively, and the aspect ratio was 28.1 with the preferred orientation along the <001> direction. XRD and TEM results showed a high crystallinity of the ZnO nanowires. Optical measurement revealed that ZnO nanowires emitted intensive stimulated UV at 376 nm without showing visible emission related to oxygen defects.

Correlation between the concentration of TeO2 and the radiation shielding properties in the TeO2-MoO3-V2O5 glass system

  • Y. Al-Hadeethi ;M.I. Sayyed
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1218-1224
    • /
    • 2023
  • We investigated the radiation shielding competence for TeO2-V2O5-MoO3 glasses. The Phy-X software was used to report the radiation shielding parameters for the present glasses. With an increase in TeO2 and MoO3 content, the samples' linear attenuation coefficient improves. However, at low energies, this change is more apparent. At low energy, the present samples have an effective atomic number (Zeff) that is relatively high (in order of 16.17-24.48 at 0.347 MeV). In addition, the findings demonstrated that the density of the samples is a very critical factor in determining the half value layer (HVL). The minimal HVL for each sample can be found at 0.347 MeV and corresponds to 1.776, 1.519, 1.391, 1.210 and 1.167 cm for Te1 to Te5 respectively. However, the highest HVL of these glasses is recorded at 1.33 MeV, which corresponds to 3.773, 3.365, 3.218, 2.925 and 2.908 cm respectively. The tenth value layer results indicate that the thickness of the specimens needs to be increased in order to shield the photons that have a greater energy. Also, the TVL results demonstrated that the sample with the greatest TeO2 and MoO3 concentration has a higher capacity to attenuate photons.