DOI QR코드

DOI QR Code

Analyses on Fine Structure and Electronic Structure of Cr-doped Li4Ti5O12 by Using X-ray Absorption Spectroscopy and First Principle Calculation

X-선 흡수실험 및 제일원리계산을 통한 Cr-doped Li4Ti5O12의 미세구조 및 전자구조 해석

  • Song, Han-Nah (Division of Energy Systems, School of Mechanical Engineering, Pusan National University) ;
  • Kim, Hyung-Sun (Advanced Battery Center, Korea Institute of Science & Technology) ;
  • Cho, Byung-Won (Advanced Battery Center, Korea Institute of Science & Technology) ;
  • Kim, Yong-Tae (Division of Energy Systems, School of Mechanical Engineering, Pusan National University)
  • 송한나 (부산대학교 기계공학부 에너지시스템) ;
  • 김형선 (한국과학기술연구원 이차전지센터) ;
  • 조병원 (한국과학기술연구원 이차전지센터) ;
  • 김용태 (부산대학교 기계공학부 에너지시스템)
  • Received : 2011.01.17
  • Accepted : 2011.01.26
  • Published : 2011.02.28

Abstract

$Li_4Ti_5O_{12}$ has been considered a potential material for high power lithium batteries. Since $Li_4Ti_5O_{12}$ is however an insulator having a broad band gap, various methods have been employed to improve the conductivity. In this study, we have investigated the change of fine structure and electronic structure by Cr doping using X-ray absorption spectroscopy and First Principle Calculation. Doping with Cr, we could obtain an enhanced electronic conductivity by locating the Fermi level at the center position of Cr d-band and identify the change of XANES pre-edge and white line peak due to the increase of electron density of Ti d-band.

$Li_4Ti_5O_{12}$는 우수한 안정성으로 고출력 배터리의 음극 물질로 주 목 받고 있다. 그러나 절연체로서 전도도의 개선이 필요한 상황으로 다양한 방법이 시도되고 있다. 본 연구에서는 Cr 도핑을 통해서 $Li_4Ti_5O_{12}$의 전도도 향상을 목표로 하였으며, X-선 흡수 실험 및 FEFF 8.4 코드를 이용한 제일원리 계산을 통해서 도핑에 의한 미세 구조 및 전자 구조의 변화를 분석하였다. Cr 도핑은 페르미 레벨을 Cr d 밴드의 중심에 위치시켜 전도성을향상시켰으며, Ti d 밴드의 전자밀도를 높여 XANES pre-edge및 White line의 변화를 야기했다.

Keywords

References

  1. T. Ohzuku, A. Ueda, and N. Yamamoto, ‘Zero-Strain Insertion Material of $Li[Li_{1/3}Ti_{5/3}]O_4$ for Rechargeable Lithium Cells’, J. Electrochem. Soc., 142, 1431 (1995). https://doi.org/10.1149/1.2048592
  2. W. Lu, I. Belharouak, J. Liu, and K. Amine, ‘Electrochemical and Thermal Investigation of $Li_{4/3}Ti_{5/3}O_4$ Spinel’, J. Electrochem. Soc., 154(12), A1083 (2007). https://doi.org/10.1149/1.2783770
  3. Y. Qi, Y. Huang, D. Jia, S. J. Bao, and Z. P. Guo, ‘Preparation and characterization of novel spinel $Li_4Ti_5O_{12x}Br_x$ anode materials’, Electrochim. Acta., 54, 4772 (2009). https://doi.org/10.1016/j.electacta.2009.04.010
  4. Y. F. Tang, L. Yang, Z. Qiu, and J. S. Huang, ‘Preparation and electrochemical lithium storage of flower-like spinel $Li_4Ti_5O_{12}$ consisting of nanosheets’, Electrochem. Commun., 10, 1513 (2008). https://doi.org/10.1016/j.elecom.2008.07.049
  5. R. Dominko, M. Gaberscek, M. Bele, D. Mihailovic, and J. Jamnik, ‘Carbon nanocoatings on active materials for Li-ion batteries’, J. Eur. Ceram. Soc., 27, 909 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.04.133
  6. J. J. Huang and Z. Y. Jiang, ‘The preparation and characterization of $Li_4Ti_5O_{12}$/carbon nano-tubes for lithium ion battery’, Electrochim. Acta, 53, 7756 (2008). https://doi.org/10.1016/j.electacta.2008.05.031
  7. H. Liu, Y. Feng, K. Wang, and J.Y. Xie, ‘Synthesis and electrochemical properties of $Li_4Ti_5O_{12}$/C compositeby the PVB rheological phase method’, J. Phys. Chem. Solids, 69, 2037 (2008). https://doi.org/10.1016/j.jpcs.2008.02.017
  8. S. H. Huang, Z. Y. Wen, J. C. Zhang, and X. L. Yang, ‘Improving the electrochemical performance of $Li_4Ti_5O_{12}$/Ag composite by an electroless deposition method’, Electrochim. Acta, 52, 3704 (2007). https://doi.org/10.1016/j.electacta.2006.10.044
  9. S. H. Huang, Z. Y. Wen, B. Lin, J. D. Han, and X. G. Xu, ‘The high-rate performance of the newly designed $Li_4Ti_5O_{12}$/Cu composite anode for lithium ion batteries’, J. Alloys Compd., 457, 400 (2008). https://doi.org/10.1016/j.jallcom.2007.02.127
  10. S. H. Huang, Z. Y. Wen, X. J. Zhu, and Z. X. Lin, ‘Effects of dopant on the electrochemical performance of $Li_4Ti_5O_{12}$ as electrode material for lithium ion batteries’, J. Power Sources, 165, 408 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.010
  11. P. Kubiak, A. Garcia, M. Womes, L. Aldon, J. Olivier-Fourcade, P. E. Lippens and J. C.Jumas, ‘Phase transition in the spinel $Li_4Ti_5O_{12}$ induced by lithium insertion In fluence of the substitutions Ti/V, Ti/Mn, Ti/Fe’, J. Power Sources, 119-121, 626 (2003). https://doi.org/10.1016/S0378-7753(03)00186-1
  12. K. Mukai, K. Ariyoshi, and T. Ohzuku, ‘Comparative study of $Li[CrTi]O_4,\;Li[Li_{1/3}Ti_{5/3}]O_4\;and\;Li_{1/2}Fe_{1/2}[Li_{1/2}Fe_{1/2}Ti]O_4$ in non-aqueous lithium cells’, J. Power Sources, 146, 213 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.019
  13. H. E. Park, I. W. Seong, and W. Y. Yoon, ‘Electrochemical behaviors of wax-coated Li powder/$Li_4Ti_5O_{12}$ cells’, J. Power Sources, 189, 499 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.026
  14. H. L. Zhao, Y. Li, Z. M. Zhu, J. Lin, Z. H. Tian, and R. L. Wang, ‘Structural and electrochemical characteristics of $Li_{4x}Al_xTi_5O_{12}$ as anode material for lithium-ion batteries’, Electrochim. Acta, 53, 7079 (2008). https://doi.org/10.1016/j.electacta.2008.05.038
  15. D. Liu, C. Ouyang, J. Shu, J. Jiang, Z. Wang, and L. Chen, ‘Theoretical study of cation doping effecton the electronic conductivity of $Li_4Ti_5O_{12}$’, phys. stat. sol. (b), 243, 1835 (2006). https://doi.org/10.1002/pssb.200541404
  16. A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, ‘Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure’, Phys. Rev. B., 58, 7565 (1998). https://doi.org/10.1103/PhysRevB.58.7565
  17. N. Jiang, D. Su, and J. C. H. Spence, ‘Determination of Ti coordination from pre-edge peaks in Ti K-edge XANES’, Phys. Rev., B 76, 214117 (2007).
  18. W. Ra, M. Nakayama, W. Cho, M. Wakihara, and Y. Uchimoto, ‘Electronic and local structural changes in $Li_{2+x}Ti_3O_7$ ramsdellite compounds upon electrochemical Li-ion insertion reactions by X-ray absorption spectroscopy’, Phys. Chem. Chem. Phys, 8, 882 (2006). https://doi.org/10.1039/b512740h
  19. M. Venkateswarlu, C. H. Chen, J. S. Do, C. W. Lin , T. C. Chou, and B. J. Hwang, ‘Electrochemical properties of nano-sized $Li_4Ti_5O_{12}$ powders synthesized by a sol-gel process and characterized by X-ray absorption spectroscopy’, J. Power Sources, 146, 204 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.016
  20. K. Ariyoshi, R. Yamato, and T. Ohzuku, ‘Zero-strain insertion mechanism of $Li[Li_{1/3}Ti_{5/3}]O_4$ for advanced lithium-ion (shuttlecock) batteries’, Electrochim. Acta, 51, 1125 (2005). https://doi.org/10.1016/j.electacta.2005.05.053
  21. Y. K. Sun, D. J. Jung, Y. S. Lee, and K. S. Nahm, ‘Synthesis and electrochemical characterization of spinel Li $[Li_{(1-x)/3}Cr_xTi_{(5-2x)/3}]O_4$ anode materials’, J. Power Sources, 125, 242 (2004). https://doi.org/10.1016/j.jpowsour.2003.08.013

Cited by

  1. Controlled synthesis of La1−xSrxCrO3 nanoparticles by hydrothermal method with nonionic surfactant and their ORR activity in alkaline medium vol.48, pp.10, 2013, https://doi.org/10.1016/j.materresbull.2013.04.084