DOI QR코드

DOI QR Code

Study for Addition Effect of Propylene Carbonate to 1-ethyl-3-methylimidazolium in Electric Double Layer Capacitors

Propylene Carbonate 첨가된 1-ethyl-3-methylimidazolium의 전기이중층 커패시터에서의 효과

  • Kim, Hyun-Chul (Department of Industrial Engineering Chemistry, Chungbuk National University) ;
  • Yang, Jeong-Jin (Department of Industrial Engineering Chemistry, Chungbuk National University) ;
  • Kim, Han-Joo (Department of Industrial Engineering Chemistry, Chungbuk National University) ;
  • Sin, Dal-Woo (Korea JCC. Co. LTD.) ;
  • Park, Soo-Gil (Department of Industrial Engineering Chemistry, Chungbuk National University)
  • Received : 2010.12.29
  • Accepted : 2011.02.11
  • Published : 2011.02.28

Abstract

Because the ionic liquid added with Propylene carbonate(PC) at room temperature has lower viscosity than original, we considered electrochemical behavior of it in EDLC. The ionic liquid without PC which does not have ions has no problem in capacity since it has enough ions. The electrolyte resistance was decreased with decreasing viscosity. As a result of identifying high current discharge capacity, we observed that the ionic liquid had capacity of 73.12% at current density of $80\;mA/cm^{-2}$, but it increased to 81.94% at PC content of 40 vol%.

상온 이온성액체에 PC (Propylene carbonate)를 첨가하여 이온성액체(EMI-BF4)가 갖고있는 점도를 감소하고자 하였으며 EDLC에 적용하여 전기화학적 거동을 고찰하였다. 이온성액체는 충분한 이온을 가지고 있기 때문에 이온이 없는 PC를 첨가 하여도 용량구현에는 문제가 되지 않는다. 점도가 낮아짐에 따라 전해액 저항이 감소하였다. 또한 EDLC 적용시 대전류 방전용량을 확인한 결과 이온성액체에서는 $80\;mA/cm^2$의 전류밀도에서 73.1%의 용량을 유지하였지만 PC의 함량이 40 vol%인 경우 최고 81.9%까지 증가되었다.

Keywords

References

  1. G. E. Blomgren and A. Webber, Advances in lithium-ion batteries, pp. 185, Kluwar Academic/Plenium Publishers, New York., (2002)
  2. P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalynasundaram, and M. Gratzel, Inorg. Chem., 35, 1168 (1996). https://doi.org/10.1021/ic951325x
  3. M. Ue, K. Idaand, and S. mori, J. Electrochem. Soc., 141, 2989 (1994). https://doi.org/10.1149/1.2059270
  4. M. Ue, J. Electrochem. Soc., 141, 3336 (1994). https://doi.org/10.1149/1.2059336
  5. M. Ue, J. Electrochem. Soc., 143, L270 (1996). https://doi.org/10.1149/1.1837231
  6. P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalynasundaram, and M. Gratzel, Inorg. Chem., 35, 1168 (1996). https://doi.org/10.1021/ic951325x
  7. M. Ue, M Takeda, A Toriumi, A, Kominato, R. Hagiwara, and Y. Ito, J. Electrochem. Soc., 150, A477 (2003). https://doi.org/10.1149/1.1559066
  8. T. Sato, G. Masuda, and K. Takagi, electrochem. Acta., 49, 3603 (2004). https://doi.org/10.1016/j.electacta.2004.03.030
  9. Anna Jarosik, Sebastian R. Krajewski, Andrzej Lewandowski, and Przemysaaw Radzimski, Journal of Molecular Liquids., 123, 43-50 (2006). https://doi.org/10.1016/j.molliq.2005.06.001

Cited by

  1. Electrochemical Performance of Activated Carbon Electrode Materials with Various Post Treatments for EDLC vol.24, pp.6, 2014, https://doi.org/10.3740/MRSK.2014.24.6.285
  2. Electrochemical Characteristics of Supercapacitor Using Ionic Liquid Electrolyte vol.14, pp.4, 2011, https://doi.org/10.5229/JKES.2011.14.4.201