Isotopic Differences among Zooplankton Taxa and Seasonal Variation of Zooplankton Community Coexisting with Microcystis

Microcystis와 공존하는 동물플랑크톤 군집의 계절변화 및 안정동위원소비의 차이

  • Lee, Jae-Yong (Department of Environmental Science, Kangwon National University) ;
  • Kim, Jai-Iu (Department of Environmental Science, Kangwon National University) ;
  • Jung, Yu-Kyong (Department of Environmental Science, Kangwon National University) ;
  • Kim, Bom-Chul (Department of Environmental Science, Kangwon National University)
  • Received : 2009.09.17
  • Accepted : 2009.12.09
  • Published : 2010.03.01

Abstract

We used stable isotope analysis to investigate the hypothesis that zooplankton were not able to utilize Microcystis as a food source. We also studied seasonal variation of the zooplankton community in a eutrophic Wangsong reservoir. The dominant copepod species changed from Cyclops vicinus to Thermocyclops taihokuensis. Density of zooplankton was suppressed by high density of Microcystis in June and the density of phytoplankton and chlorophyll a concentration was lowest in July. The difference in $\delta^{13}C$ and $\delta^{15}N$ between cladocerans (Daphnia galeata and Bosmina longirostris) and copepods showed the maximum difference of $12^{\circ}/_{\circ\circ}$ and $4^{\circ}/_{\circ\circ}$, respectively, indicating different energy sources and trophic positions between two taxonomic groups. The difference in $\delta^{13}C$ between Microcystis and zooplankton ranged from $3{\sim}7^{\circ}/_{\circ\circ}$, supporting the hypothesis that Microcystis could not be used as food source of zooplankton.

본 연구에서는 부영양한 저수지에서 동물플랑크톤 군집의 계절변동을 파악하고 안정동위원소분석을 통해 동물플랑크톤이 Microcystis 섭식을 회피한다는 기존의 가설을 확인하고자 하였다. 요각류는 Cyclops vicinus (C. vicinus)에서 Thermocyclops taihokuensis (T. taihokuensis)로 우점종의 천이를 보였다. 계절변동에 따른 동물플랑크톤군집 밀도는 Microcystis의 밀도가 가장 높았던 6월에 가장 낮았고, 식물플랑크톤의 밀도 및 Chl. $\alpha$ 농도는 7월에 낮게 나타났다. 지각류와 요각류 사이에 $\delta^{13}C$$\delta^{15}N$는 각각 최대 $12^{\circ}/_{\circ\circ}$$4^{\circ}/_{\circ\circ}$의 차이를 보였으며, 이는 왕송저수지에서 지각류(D. galeata와 B. longirostris)와 요각류(C. vicinus)는 서로 다른 영양단계에 위치하고 다른 에너지원을 이용함을 시사하였다. Microcystis와 동물플랑크톤(지각류와 요각류)의 $\delta^{13}C$ 사이에 보이는 $3{\sim}7^{\circ}/_{\circ\circ}$의 차이는 동물플랑크톤이 Microcystis를 직접 이용하기 어렵다는 기존의 가설을 지지하였다.

Keywords

References

  1. 경기도보건환경연구원. 2004. 2004년 경기도 6개 호소 생물상조사. p. 16.
  2. 김명운, 김민호, 조장천, 김상종. 1995. Cyanobacteria의 증식에 따른 대청호 생태계내의 생물군집 변화. 한국육수학회지 28(1): 1-9.
  3. 김호섭, 김범철, 최은미, 황순진. 2000. 부영양호수에서 남조류 bloom이 동물플랑크톤 군집변화에 미치는 영향. 한국육수학회지 33(4): 366-373.
  4. 김호섭,박제철, 황순진. 2003. 수심이 얕은 부영양 인공호(일감호)의 동.식물플랑크톤 동태학. 한국육수학회지 36(3): 286-294.
  5. 박재충, 박정원, 김종달, 신재기. 2005. 안동호에서 환경요인과 식물플랑크톤의 시.공간적인 변동. 한국조류학회지 20(4): 333-343.
  6. 심두섭, 안태석. 1992. 소양호에서 동물플랑크톤의 섭식작용에 관한 연구. 한국미생물학회지 30: 129-133.
  7. 이재용, 김범철, 吉岡崇仁, 日野修次. 2008. 두 삼림호수에 공존하는 동물플랑크톤종의 다른 안정동위원소비. 한국하천호수학회지 41(3): 294-300.
  8. 이지민, 이정준, 박종근, 이정호, 장천영, 윤성명. 2005. 대청호 남조류 대발생기의 동물플랑크돈상 및 Microcystis aeruginosa와 물벼룩류 개체군 변동의 상관관계. 한국육수학회지 38(2): 146-159.
  9. 임병진, 김범철, 유광일, 유재근. 1997. 낙동강에서 남조류 대발생시 동물플랑크톤의 군집 변화. 한국육수학회지 30(4): 337-346.
  10. 최성현, 임병진. 2003. 배양조건에 다른 물벼룩의 개체생산 특성. 한국육수학회지 36(2): 208-214.
  11. 하 경, 장민호, 정종문, 주기재. 2003. 동물플랑크톤 배양여과액에 의한 Microcystis aeruginosa의 성장, 형태 및 microcystin 생성량의 변화. 한국육수학회지 36(1): 1-8.
  12. APHA(American Public Health Association). 1998. Standard methods for the examination of water and wastewater, 20th ed. American Public Health Association, Washington DC.
  13. Brandl, Z. 2005. Freshwater copepods and rotifers: predators and their prey. Hydrobiologia 546: 475-489. https://doi.org/10.1007/s10750-005-4290-3
  14. Burn, C.W. and A. Dodds. 1999. Food limitation, predation and allelopathy in a population of Daphnia carinata. Hydrobiologia 400: 41-53. https://doi.org/10.1023/A:1003798827352
  15. Burns, C.W. and M. Schallenberg. 2001. Calanoid copepods versus cladocerans: Consumer effects on protozoa in lakes of different trophic status. Limnol. Oceanogr. 46: 1558-1565. https://doi.org/10.4319/lo.2001.46.6.1558
  16. Carmichael, W.W. 1992. Cyanobacteria secondary metabolites - the cyanotoxins. Journal of Applied Bacteriology 72: 445-459. https://doi.org/10.1111/j.1365-2672.1992.tb01858.x
  17. Chen, F. and P. Xie. 2003. The effects of fresh and decomposed Microcystis aeruginosa on cladocerans from a subtropic Chinese Lake. Journal of Freshwater. 18(1): 97-104. https://doi.org/10.1080/02705060.2003.9663955
  18. Coffin, R.B., B. Fry and R.T. Wright. 1989. Carbon isotopic compositions of estuarine bacteria. Limnol. Oceanogr. 34: 1305-1310. https://doi.org/10.4319/lo.1989.34.7.1305
  19. DeNiro, M.J. and S. Epstein. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica Cosmochimica 42: 495-506. https://doi.org/10.1016/0016-7037(78)90199-0
  20. DeNiro, M.J. and S. Epstein. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica Cosmochimica 45: 341-351. https://doi.org/10.1016/0016-7037(81)90244-1
  21. Devetter, M. and J. Seda. 2006. Regulation of rotifer community by predation of Cyclops vicinus (Copepoda) in the Rimov reservoir in spring. Internat. Rev. Hydrobiol. 91: 101-112. https://doi.org/10.1002/iroh.200510810
  22. Ferrao-Filho, A.S. and S.M.F.O. Azevedo. 2003. Effect of unicellular and colonial forms of toxic Microcystis aeruginosa from laboratory cultures and natural populations on tropical cladocerans. Aquatic Ecology 37: 23-35. https://doi.org/10.1023/A:1022133329940
  23. Fulton, R.S. and H.W. Paerl. 1987. Effect of colonial morphology on zooplankton utilization of algal resources during blue-green algal (Microcystis aeruginosa) blooms. Limnology and Oceanography 32: 634-644. https://doi.org/10.4319/lo.1987.32.3.0634
  24. Geller, W. and H. Muller. 1981. The filtration apparatus of Cladocera: filter mesh-sizes and their implications on food selectivity. Oecologia 49: 316-321. https://doi.org/10.1007/BF00347591
  25. Grey, J., R.I. Jones and D. Sleep. 2000. Stable isotope analysis of the origins of zooplankton carbon in lakes of differing trophic state. Oecologia 123:232-240. https://doi.org/10.1007/s004420051010
  26. Grey, J., R.I. Jones and D. Sleep. 2001. Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope analysis. Limnol. Oceanogr. 46: 505-513. https://doi.org/10.4319/lo.2001.46.3.0505
  27. Gu, B. and C.L. Schelske. 1996. Temporal and spatial variations in phytoplankton carbon isotopes in a polymictic subtrophical lake. Journal of Plankton Research 18: 2081-2092. https://doi.org/10.1093/plankt/18.11.2081
  28. Gu, B. and V. Alexander. 1993. Estimation of ${N_2}$ fixation based on differences in the natural abundance of 15N among freshwater ${N_2}$-fixing and non-${N_2}$-fixing algae. Oecologia 96: 43-48. https://doi.org/10.1007/BF00318029
  29. Gu, B. and V. Alexander. 1996. Stable carbon isotope evidence for atmospheric ${CO_2}$ uptake by cyanobacterial surface scums in a eutrophic lake. Applied and Environmental Microbiology 62(5): 1803-1804.
  30. Hanazato, T. and M. Yasuno. 1987. Evaluation of Microcystis as food for zooplankton in a eutrophic lake. Hydrobiologia 144: 251-259. https://doi.org/10.1007/BF00005559
  31. Heo, W.M. and B. Kim. 1997. The change in N/P ratio with eutrophication and cyanobacterial blooms in Lake Soyang, Korea. Verh. Internat. Verein. Limnol. 26: 491-495.
  32. Hessen, D.O., T, Andersen and A. Lyche. 1990. Carbon metabolism in a humic lake: Pool sizes and cycling though zooplankton. Limnol. Oceanogr. 35(1): 84-99. https://doi.org/10.4319/lo.1990.35.1.0084
  33. Kirk, K. 2002. Competition in variable environments: experiments with planktonic rotifers. Freshwater Biology 47: 1089-1096. https://doi.org/10.1046/j.1365-2427.2002.00841.x
  34. Kling, G.W., B. Fry and W.J. O'brien. 1992. Stable isotopes and planktonic trophic structure in Arctic lakes. Ecology 73(2): 561-566 https://doi.org/10.2307/1940762
  35. Kobari, T. and S. Ban. 1998. Life cycles of two limnetic cyclopoid copepods, Cyclops vicinus and Thermocyclops crassus, in two different habitats. Journal of Plankton 20(6): 1073-1086. https://doi.org/10.1093/plankt/20.6.1073
  36. Korponai, J., K. Matyas, G. Paulovits, I. Tatral and N. Kovacs. 1997. The effect of different fish communities on the cladoceran plankton assemblages of the KisBalaton Rerservoir, Hungary. Hydrobiologia 360: 211-221. https://doi.org/10.1023/A:1003125621301
  37. Lee, J.Y., T. Yoshioka and T. Hanazato. 2002. Faunal trophic interaction in an oligotrophic-dystrophic lake (Shirakoma- ike, Japan). Limnology 3: 151-158. https://doi.org/10.1007/s102010200018
  38. Liu, H., P. Xie, F. Chen, H. Tang and L. Xie. 2002. Enhancement of planktonic rotifers by Microcystis aeruginosa blooms: an enclosure experiment in a shallow eutrophic lake. Journal of Freshwater Ecology 17: 239-247. https://doi.org/10.1080/02705060.2002.9663892
  39. Lorrain, A., N. Savoye, L. Chauvaud, Y.M. Paulet and N. Naulet. 2003. Decarbonation and preservation method for the analysis of organic C and N content and stable isotope ratios of low-carbonated suspended particulate material. Analytica Chimica Acta 491: 125-133. https://doi.org/10.1016/S0003-2670(03)00815-8
  40. McClelland, J.W. and J.P. Montoya. 2002. Trophic relationships and the nitrogen isotopic composition of amino acids in plankton. Ecology 83: 2173-2180. https://doi.org/10.1890/0012-9658(2002)083[2173:TRATNI]2.0.CO;2
  41. Minagawa, M., A.W. David and R.K. Isaac. 1984. Comparison of Kjeldahl and Combusition Methods for Measurement of Nitrogen Isotope Ratios in Organic Matter. Anal. Chem. 56: 1859-1861. https://doi.org/10.1021/ac00275a023
  42. Orcutt, J.D. and M.L. Pace. 1984. Seasonal dynamics of rotifer and crustacean zooplankton populations in a eutrophic, monomictic lake with a note on rotifer sampling techniques. Hydrobiology 119: 73-80. https://doi.org/10.1007/BF00016866
  43. Panosso, R., P. Carlsson, B. Kozlowsky-Suzuki, S.M.F.O. Azevdo and E. Graneli. 2003. Effect of grazing by a neotrophical copepod, Notodiaptomus, on a natural cyanobacterial assemblage and on toxic and non-toxic cyanobacterial strains. Journal of Plankton Research 25: 1169-1175. https://doi.org/10.1093/plankt/25.9.1169
  44. Park, H.D., C. Iwami, M.F. Watanabe, K.I. Harada, T. Okino and H. Hayashi. 1998. Temporal variabilities of the concentrations intra- and extracellular microcystin and toxic Microcystis species in a hypertrophic lake, Lake Suwa, Japan (1991-1994). Env. Tox. Wat. Qual. 13: 61-72. https://doi.org/10.1002/(SICI)1098-2256(1998)13:1<61::AID-TOX4>3.0.CO;2-5
  45. Park, S.K. and J.H. Kim. 1995. Cross correlation analysis of environmental factors affecting water-bloom of Microcystis aeruginosa (Cyanophyta). Korean Journal of Limnology 28(4): 381-391.
  46. Penaloza, R., M. Rojas, I. Vila and F. Zambrano. 1990. Toxicity of a soluble peptide from Microcystis sp. to zooplankton and fish. Freshwater Biology 24: 233-240. https://doi.org/10.1111/j.1365-2427.1990.tb00705.x
  47. Pulido-Villena, E., I. Reche and R. Morales-Baquero. 2005. Food web reliance on allochthonous carbon in two high mountain lakes with contrasting catchments: a stable isotope approach. Canadian Journal of Fisheries and Aquatic Sciences 62: 2640-2648. https://doi.org/10.1139/f05-169
  48. Quiblier, C., G. Bourdier, C. Amblard and D. Pepin. 1994. Separation of phytoplanktonic pigments by HPLC for the study of phyto-zooplankton trophic relationships. Aquatic Sciences 56(1): 1015-1621.
  49. Schindler, D.E., S.R. Carpenter, J.J. Cole, J.F. Kitchell and M.L. Pace. 1997. Influence of food web structure on carbon exchange between lakes and the atmosphere. Science 277: 248-251. https://doi.org/10.1126/science.277.5323.248
  50. Starkweather, P.L. and P.E. KelIar. 1983. Utilization of cyano-bacteria by Brachionus calyciflorus: Anabaena flos-aquae (NRC-44-1) as a sole or complementary food source. Hydrobiologia 104: 373-178. https://doi.org/10.1007/BF00045994
  51. Syvaranta, J., H. Hamalainen and R.I. Jones. 2006. Withinlake variability in carbon and nitrogen stable isotope signatures. Freshwater Biology 51: 1090-1102. https://doi.org/10.1111/j.1365-2427.2006.01557.x
  52. Vander Zanden, M.J. and J.B. Rasmussen. 2001. Variation in $\delta^{15}N$ and $\delta^{13}C$ trophic fractionation: Implications for aquatic food web. Freshwater Biology 51: 807-822.
  53. Vuorio, K., M. Meili and J. Sarvala. 2006. Taxon-specific variation in the stable isotopic signatures ($\delta^{13}C$ and $\delta^{15}N$) of lake phytoplankton. Limnology and Oceanography 46: 2061-2066.
  54. Yang, Z., F. Kong, X. Shi and H. Cao. 2006. Morphological response of Microcystis aeruginosa to grazing by different sorts of zooplankton. Hydrobiologia 563: 225-230. https://doi.org/10.1007/s10750-005-0008-9
  55. Yoshioka, T., E. Wada and H. Hayashi. 1994. A stable isotope study on seasonal food web dynamics in a eutrophic lake. Ecology 75(3): 835-864. https://doi.org/10.2307/1941739
  56. Zohary, T., J. Erez, M. Gophen, I. Berman-Frank and M. Stiller. 1994. Seasonality of stable carbon isotopes within the pelagic food web of Lake Kinneret. Limnology and Oceanography 39: 1030-1043. https://doi.org/10.4319/lo.1994.39.5.1030