• Title/Summary/Keyword: high-G shock

Search Result 102, Processing Time 0.021 seconds

High Shock-Resistant Design of Piezoresistive High-g Accelerometer

  • Yongle Lu;Zhen Qu;Jie Yang;Wenxin Wang;Wenbo Wang;Yu Liu
    • Journal of Information Processing Systems
    • /
    • v.19 no.2
    • /
    • pp.173-188
    • /
    • 2023
  • To improve the shock-resistance of piezoresistive high-g accelerometer, we propose a design of piezoresistive high-g accelerometer. The accelerometer employs special-shaped proof masses system with a cross gap. Four tiny sensing beams are bonded above the cross gap. The expression of the deformation, natural frequency and damping is deduced, and the structural parameters are optimized. The accelerometer structure is simulated and verified by finite element method (FEM) simulation. The results show that the range of the accelerometer can reach 200,000 g, the natural frequency is 453.6 kHz, and the cross-axis sensitivity of X-axis and Y-axis is 0.25% and 0.11%, respectively, which can apply to the measurement of high shock. Contrastively, the cross-axis sensitivity of X-axis and Y-axis is respectively, reduced by 93.2% and 96.9%. The sensitivity of our accelerometer is 0.88 μV/g. It is of great value for the application of piezoresistive high-g accelerometer with high shock-resistance.

Design and Analysis of MEMS Vibrating Ring Gyroscope Considering High-g shock reliability (고내충격용 MEMS 진동형 링 자이로스코프 설계 및 분석)

  • Yoon, Sung-Jin;Park, U-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1440-1447
    • /
    • 2015
  • This paper describes a study for anti high-shock design of MEMS vibrating ring gyroscope. Structure models was made by MEMS technology processing. MEMS Vibrating Ring Gyroscope mechanical structure were not only anti-high shock simulated with the LS Dyna Ver 971 software but also with mathematical analysis and the finite element method in order to confirm the shock reliability. Shock test result of a MEMS vibrating gyroscope being developed to have gun-hardened survivability while maintaining tactical grade navigation performance for application to various guided projectiles.

A Numerical Investigation for Prediction of Shock Deceleration of Conical Impactor in Gas-Gun Tests (가스건 시험에서 원추형 충격자의 충격 감가속도 예측에 관한 전산해석적 연구)

  • Yoon, Hee;Oh, Jong Soo;Jung, Myung-Suk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.279-286
    • /
    • 2019
  • In this study, a numerical investigation is conducted for the shock deceleration prediction of a conical impactor in gas-gun tests. With the development of weapon systems, gas-gun tests are required to validate the survivability and structural reliability of devices under test (DUT) in high-G shock environments, such as those over ten thousand Gs or more. As shock endurance is highly influenced by various bird parameters, such as mass, velocity, and pressure, it is important to determine the appropriate test conditions to generate a high-G shock environment. However, experimental repetitive studies are inefficient to validate test conditions in terms of economic aspects. Therefore, a numerical technique is required to replace experimental gas-gun tests. Here, a numerical investigation is conducted with ANSYS AUTODYN using explicit code. Through this investigation, the dynamic behavior of DUT is presented. In addition, the results of numerical studies are verified through a comparison with the experimental results of a gas-gun test.

Response Characteristics of the Cushion Materials for Packaging of the Pears by Mechanical Shock during Transportation (유통 중 기계적 충격에 의한 배 포장완충재의 응답 특성)

  • Jung, Hyun-Mo;Kim, Man-Soo;Kim, Ghi-Seok;Cho, Byeong-Kwan
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.13 no.1
    • /
    • pp.25-28
    • /
    • 2007
  • Physical damage on fruits and vegetables caused by shock degrades the value of product in the fresh market. In order to design a product/package system to protect the product, the peak acceleration or G force to the product that causes shock damage needs to be determined. Shock cushion packaging is applied to protect goods of all kinds. It can be adapted in their shape to any product to be packed, so that its shock absorbing properties is determined by geometry of the product. The shape of a cushion can be adapted to the expected shock loads. To analyze the response properties of cushion materials for packaging of the pears for optimum packaging design during transportation, shock tests were carried out. Shock acceleration that is happened in pears were appeared very high by $25{\sim}30G$ in the input shock acceleration of 14.1618 G that was measured in transportation road. This means that the pears receive the shock acceleration more than maximum double itself and the damage by this can happen and the shock acceleration increase in case use PE tray cup and PE net in fruits, the use of corrugated fiberboard pad may become one method that it can reduce the damage by the shock in packaging of fruits.

  • PDF

A HIGH-RESOLUTION NUMERICAL ANALYSIS OF SHOCK FOCUSING IN CONCAVE REFLECTORS (반사경 내부 유동의 초점 형성에 관한 고해상도 수치 해석)

  • Jung, Y.G.;Chang, K.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.170-175
    • /
    • 2009
  • Shock focusing is related with explosive release of shock wave energy on a narrow spot in a short duration of time triggering a spontaneous high pressure near the focal point. It is well known that reflection of planar incident shock wave from the metallic concave mirror such as ellipsoidal, paraboloidal or hemispherical cavities will focus on a focal point. We intend to improve the computational results using a wave propagation algorithm and to resolve the mushroom-like structure. For computation of the concave cavity flow, it is not easy to use a single-block mesh because of the many singular points in geometry and coordinates. We have employed a uniform Cartesian-grid method for the wave propagation algorithm.

  • PDF

Use of large-scale shake table tests to assess the seismic response of a tunnel embedded in compacted sand

  • Zhou, Hao;Qin, Xiaoyang;Wang, Xinghua;Liang, Yan
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.655-665
    • /
    • 2018
  • Shield tunnels are widely used throughout the world. However, their seismic performance has not been well studied. This paper focuses on the seismic response of a large scale model tunnel in compacted sand. A 9.3 m long, 3.7 m wide and 2.5 m high rigid box was filled with sand so as to simulate the sandy soil surrounding the tunnel. The setup was excited on a large-scale shake table. The model tunnel used was a 1:8 scaled model with a cross-sectional diameter of 900 mm. The effective shock absorbing layer (SAL) on the seismic response of the model tunnel was also investigated. The thickness of the tunnel lining is 60 mm. The earthquake motion recorded from the Kobe earthquake waves was used. The ground motions were scaled to have the same peak accelerations. A total of three peak accelerations were considered (i.e., 0.1 g, 0.2 g and 0.4 g). During the tests, the strain, acceleration and soil pressure on the surface of the tunnel were measured. In order to investigate the effect of shock absorbing layer on the dynamic response of the sand- tunnel system, two tunnel models were set up, one with and one without the shock absorbing layer of foam board were used. The results shows the longitudinal direction acceleration of the model tunnel with a shock absorbing layer were lower than those of model tunnel without the shock absorbing layer, Which indicates that the shock absorbing layer has a beneficial effect on the acceleration reduction. In addition, the shock absorbing layer has influence on the hoop strain and earth pressure of the model tunnel, this the effect of shock absorbing layer to the model tunnel will be discussed in the paper.

EXACT RIEMANN SOLVER FOR THE AIR-WATER TWO-PHASE SHOCK TUBE PROBLEMS (공기-물 이상매질 충격파관 문제에 대한 정확한 Riemann 해법)

  • Yeom, G.S.;Chang, K.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.365-367
    • /
    • 2010
  • In this paper, we presented the exact Riemann solver for the air-water two-phase shock tube problems where the strength of the propagated sock wave is moderately weak. The shock tube has a diaphragm in the middle which separates water medium in the left and air medium in the right. By rupturing the diaphragm, various waves such as rarefaction wave, shock wave and contact discontinuity are propagated into water and air. Both fluids are treated as compressible, with the linearized equations of state. We used the isentropic relations for the air and water assuming a weak shock wave. We solved the shock tube problem considering a high pressure in the water and a low pressure in the air. The numerical results cleary showed a left-traveling rarefaction wave in the water, a right-traveling shock wave in the air, and the right-traveling material interface.

  • PDF

Different Effects of Acidic pH Shock on the Prodiginine Production in Streptomyces coelicolor M511 and SJM1 Mutants

  • Mo, SangJoon;Kim, Jae-Heon;Oh, Chung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1454-1459
    • /
    • 2013
  • The changes in prodiginines productions caused by pH shock culture of Streptomyces coelicolor strains were estimated. In Streptomyces coelicolor M511, undecylprodiginine and streptorubin B productions increased 1.8-fold (37.22 mg/g) and 2.5-fold (18.61 mg/g), respectively, by pH shock (from 7.2 to 4.0). In contrast, this resulted in the significantly decreased prodigignines production in the redP deletion mutant SJM1; 3.7-fold for undecylprodiginine, 4.4-fold for streptorubin B, 5.2-fold for methylundecylprodiginine, and 6.4-fold for methyldodecylundecylprodiginine, respectively. RT-PCR analyses showed that, during pH shock, expression of redD, the transcription activator gene, was increased while the expression of fabH, the decarboxylative condensation enzyme gene in fatty acid biosynthesis, was decreased in both strains. The enhanced redD expression was in good accordance with the increased total prodiginines production of M511. However, for SJM1 mutant, the decrease of fabH expression occurred more strikingly, such that it became almost completely turned off during acidic pH shock culture. Therefore, a down-regulation of fabH was considered to be the cause of decreased amount of total prodiginines produced, although redD expression was high in SJM1 mutant.

Numerical Study on a Model Scramjet Engine with a Backward Step (후방단이 있는 모델 초음속연소기의 연소수치해석)

  • Moon, G.W.;Jeung, I.S.;Jeong, E.J.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.127-132
    • /
    • 2001
  • A numerical study was carried out to investigate the combustion phenomena in a model Scramjet engine, which had been experimentally studied in the University of Tokyo using a high-enthalpy supersonic wind tunnel. The main airflow was 2.0 in Mach number and the total temperature of hot flow was 1800K. Equivalence ratio was set to be rather higher value of 0.26 than that of experiment to investigate the effect of strong precombustion shock. The results showed that self-ignition occurred at the rear bottom wall of the combustor and combined with the shear layer flame between fuel jet and main airflow. Then, precombustion shock was generated at the step location and reversely enhanced the mixing and combustion process behind the shock. Due to the high equivalence ratio, the precombustion shock moved upstream of the step compared with that of experiment.

  • PDF

Impact of External Temperature Environment on Large FCBGA Sn-Ag-Cu Solder Interconnect Board Level Mechanical Shock Performance

  • Lee, Tae-Kyu
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.53-59
    • /
    • 2014
  • The mechanical stability of solder joints in electronic devices with Sn-Ag-Cu is a continuous issue since the material was applied to the industry. Various shock test methods were developed and standardized tests are used in the industry worldwide. Although it is applied for several years, the detailed mechanism of the shock induced failure mechanism is still under investigation. In this study, the effect of external temperature was observed on large Flip-chip BGA components. The weight and size of the large package produced a high strain region near the corner of the component and thus show full fracture at around 200G level shock input. The shock performance at elevated temperature, at $100^{\circ}C$ showed degradation based on board pad designs. The failure mode and potential failure mechanisms are discussed.