Acknowledgement
This paper is supported by Chongqing Natural Science Foundation of China (No. CSTC2021JCYJMSXMX0566).
References
- H. I. Jung, D. S. Kwon, and J. Kim, "Fabrication and characterization of monolithic piezoresistive high-g three-axis accelerometer," Micro and Nano Systems Letters, vol. 5, article no. 7, 2017. https://doi.org/10.1186/s40486-016-0041-7
- P. Mohankumar, J. Ajayan, R. Yasodharan, P. Devendran, and R. Sambasivam, "A review of micromachined sensors for automotive applications," Measurement, vol. 140, pp. 305-322, 2019. https://doi.org/10.1016/j.measurement.2019.03.064
- S. Cai, W. Li, H. Zou, H. Bao, K. Zhang, J. Wang, Z. Song, and X. Li, "Design, fabrication, and testing of a monolithically integrated tri-axis high-shock accelerometer in single (111)-silicon wafer," Micromachines, vol. 10, no. 4, article no. 227, 2019. https://doi.org/10.3390/mi10040227
- X. Hu, P. Mackowiak, M. Bauscher, O. Ehrmann, K. D. Lang, M. Schneider-Ramelow, S. Linke, and H. D. Ngo, "Design and application of a high-G piezoresistive acceleration sensor for high-impact application," Micromachines, vol. 9, no. 6, article no. 266, 2018. https://doi.org/10.3390/mi9060266
- R. W. Zurek, R. H. Tolson, D. Baird, M. Z. Johnson, and S. W. Bougher, "Application of MAVEN accelerometer and attitude control data to Mars atmospheric characterization," Space Science Reviews, vol. 195, pp. 303-317, 2015. https://doi.org/10.1007/s11214-014-0095-x
- J. Wen, H. Yao, Z. Ji, B. Wu, and F. Xu, "Self-validating high-g accelerometers through data-driven methods," Sensors and Actuators A: Physical, vol. 328, article no. 112803, 2021. https://doi.org/10.1016/j.sna.2021. 112803
- N. Gupta, S. Dutta, Y. Parmar, V. Gond, S. R. K. Vanjari, and S. Gupta, "Characterization of SOI MEMS capacitive accelerometer under varying acceleration shock pulse durations," Microsystem Technologies, vol. 27, no. 12, pp. 4319-4327, 2021. https://doi.org/10.1007/s00542-021-05227-y
- O. Paul, J. Gaspar, and P. Ruther, "Advanced silicon microstructures, sensors, and systems," IEEJ Transactions on Electrical and Electronic Engineering, vol. 2, no. 3, pp. 199-215, 2007. https://doi.org/10.1002/tee.20155
- C. Jia, Q. Mao, S. Luo, L. Zhao, D. Lu, P. Yang, et al., "Novel high-performance piezoresistive shock accelerometer for ultra-high-g measurement utilizing self-support sensing beams," Review of Scientific Instruments, vol. 91, no. 8, article no. 085001, 2020. https://doi.org/10.1063/5.0008451
- J. Wen, H. Yao, Z. Ji, B. Wu, and M. Xia, "On fault diagnosis for high-g accelerometers via data-driven models," IEEE Sensors Journal, vol. 21, no. 2, pp. 1359-1368, 2021.
- H. Yao, J. Wen, Y. Ren, B. Wu, and Z. Ji, "Low-cost measurement of industrial shock signals via deep learning calibration," in Proceedings of 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 2019, pp. 2892-2896.
- V. Narasimhan, H. Li, and J. Miao, "Micromachined high-g accelerometers: a review," Journal of Micromechanics and Microengineering, vol. 25, no. 3, article no. 033001, 2015. https://doi.org/10.1088/0960-1317/25/3/033001
- A. R. Atwell, R. S. Okojie, K. T. Kornegay, S. L. Roberson, and A. Beliveau, "Simulation, fabrication and testing of bulk micromachined 6H-SiC high-g piezoresistive accelerometers," Sensors and Actuators A: Physical, vol. 104, no. 1, pp. 11-18, 2003. https://doi.org/10.1016/S0924-4247(02)00436-3
- Y. Shi, Y. Zhao, H. Feng, H. Cao, J. Tang, J. Li, R. Zhao, and J. Liu, "Design, fabrication and calibration of a high-G MEMS accelerometer," Sensors and Actuators A: Physical, vol. 279, pp. 733-742, 2018. https://doi.org/10.1016/j.sna.2018.07.010
- Y. Shi, X. Wen, Y. Zhao, R. Zhao, H. Cao, and J. Liu, "Investigation and experiment of high shock packaging technology for high-g MEMS accelerometer," IEEE Sensors Journal, vol. 20, no. 16, pp. 9029-9037, 2020.
- C. Jia, L. Zhao, W. Jiang, X. Liu, M. Yu, M. Huang, Y. Xia, Y. Zhao, and Y. Zhao, "Impact experiment analysis of MEMS ultra-high G piezoresistive shock accelerometer," in Proceedings of 2018 IEEE Micro Electro Mechanical Systems (MEMS), Belfast, UK, 2018, pp. 964-967.
- M. Jangra, D. S. Arya, R. Khosla, and S. K. Sharma, "Maskless lithography: an approach to SU-8 based sensitive and high-g Z-axis polymer MEMS accelerometer," Microsystem Technologies, vol. 27, no. 8, pp. 2925-2934, 2021. https://doi.org/10.1007/s00542-021-05217-0
- H. Han, Z. Zhao, W. Niu, R. Huang, and L. Dong, "A low cross-axis sensitivity piezoresistive accelerometer fabricated by masked-maskless wet etching," Sensors and Actuators A: Physical, vol. 283, pp. 17-25, 2018. https://doi.org/10.1016/j.sna.2018.09.040
- M. Bao, Analysis and Design Principles of MEMS Devices. Amsterdam, The Netherlands: Elsevier, 2005.
- S. Biswas and A. K. Gogoi, "A wearable piezoresistive microaccelerometer with low cross-axis sensitivity for neurological disease diagnosis," AEU-International Journal of Electronics and Communications, vol. 99, pp. 177-185, 2019. https://doi.org/10.1016/j.aeue.2018.11.001
- M. A. Hopcroft, W. D. Nix, and T. W. Kenny, "What is the Young's modulus of silicon?," Journal of Microelectromechanical Systems, vol. 19, no. 2, pp. 229-238, 2010. https://doi.org/10.1109/JMEMS.2009.2039697
- C. J. Wilson and P. A. Beck, "Fracture testing of bulk silicon microcantilever beams subjected to a side load," Journal of Microelectromechanical Systems, vol. 5, no. 3, pp. 142-150, 1996. https://doi.org/10.1109/84.536620
- R. Kuells, S. Nau, M. Salk, and K. Thoma, "Novel piezoresistive high-g accelerometer geometry with very high sensitivity-bandwidth product," Sensors and Actuators A: Physical, vol. 182, pp. 41-48, 2012. https://doi.org/10.1016/j.sna.2012.05.014
- Y. Wang, X. Zhao, and D. Wen, "Fabrication and characteristics of a three-axis accelerometer with double Lshaped beams," Sensors, vol. 20, no. 6, article no. 1780, 2020. https://doi.org/10.3390/s20061780
- Z. Ghemari and S. Saad, "Piezoresistive accelerometer mathematical model development with experimental validation," IEEE Sensors Journal, vol. 18, no. 7, pp. 2690-2696, 2018. https://doi.org/10.1109/JSEN.2018.2805764
- A. A. Barlian, W. T. Park, J. R. Mallon, A. J. Rastegar, and B. L. Pruitt, "Semiconductor piezoresistance for microsystems," Proceedings of the IEEE, vol. 97, no. 3, pp. 513-552, 2009. https://doi.org/10.1109/JPROC.2009.2013612
- Y. Zhao, X. Li, J. Liang, and Z. Jiang, "Design, fabrication and experiment of a MEMS piezoresistive highg accelerometer," Journal of Mechanical Science and Technology, vol. 27, pp. 831-836, 2013. https://doi.org/10.1007/s12206-013-0133-8
- A. Garcia-Perez, F. Sorribes-Palmer, G. Alonso, and A. Ravanbakhsh, "Overview and application of FEM methods for shock analysis in space instruments," Aerospace Science and Technology, vol. 80, pp. 572-586, 2018. https://doi.org/10.1016/j.ast.2018.07.035
- P. Wang, Y. Zhao, B. Tian, Y. Liu, Z. Wang, C. Li, and Y. Zhao, "A piezoresistive micro-accelerometer with high frequency response and low transverse effect," Measurement Science and Technology, vol. 28, article no. 015103, 2017. https://doi.org/10.1088/1361-6501/28/1/015103