• Title/Summary/Keyword: high voltage transmission line

Search Result 254, Processing Time 0.031 seconds

Analysis of Different 500kV HVAC Transmission Lines Lightning Shielding

  • Nayel, Mohamed
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.4
    • /
    • pp.49-57
    • /
    • 2013
  • The lightning shielding of different 500 kV HVAC-TL high voltage AC transmission lines was analyzed. The studied transmission lines were horizontal flat single circuit and double circuit transmission lines. The lightning attractive areas were drawn around power conductors and shielding wires. To draw the attractive areas of the high voltage transmission lines, transmission line power conductors, shielding wires and lightning leader were modeled. Different parameters were considered such as lightningslope, ground slope and wind on lightning attractive areas. From the calculated results, the power conductors voltages affected on attractive areas around power conductors and shielding wires. For negative lightning leader, the attractive area around the transmission line power conductor increased around power conductors stressed by positives voltage and decreased around power conductors stressed by negative voltage. In spite of this, the attractivearea of the transmission line shielding wire increasedaround the shielding wire above the power conductor stressed by the positive voltage and decreased around the shielding wire above the power conductor stressed by negative voltage. The attractive areas around power conductors and shielding wires were affected by the surrounding conditions, such as lightning leader slope, ground slope. The AC voltage of the transmission lines made the shielding areas changing with time.

Planning of HVDC System Applied to Korea Electric Power Grid

  • Choi, DongHee;Lee, Soo Hyoung;Son, Gum Tae;Park, Jung-Wook;Baek, Seung-Mook
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.105-113
    • /
    • 2018
  • This paper proposes pre-analysis on planning of high-voltage direct current (HVDC) transmission system applied to Korea electric power grid. HVDC transmission system for interface lines has been considered as alternative solution for high-voltage AC transmission line in South Korea since constructing new high-voltage AC transmission lines is challenging due to political, environmental and social acceptance problems. However, the installation of HVDC transmission system as interface line in AC grid must be examined carefully. Thus, this paper suggests three scenarios to examine the influences of the installation of HVDC transmission system in AC grid. The power flow and contingency analyses are carried out for the proposed scenarios. Power reserves in metro area are also evaluated. And then the transient stability analysis focusing on special protection scheme (SPS) operations is analyzed when critical lines, which are HVDC lines or high voltage AC lines, are tripped. The latest generic model of HVDC system is considered for evaluating the impacts of the SPS operations for introducing HVDC system in the AC grid. The analyses of proposed scenarios are evaluated by electromechanical simulation.

A Study on the Algorithm for Fault Discrimination in Transmission Lines using Advanced Computational Intelligence(ACI) (ACI 기법을 이용한 송전선로 고장 종류 판별에 관한 연구)

  • Park Jae Hong;Lee Jong Beom
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.619-621
    • /
    • 2004
  • This paper presents the rapid and accurate algorithm for fault discrimination in transmission lines. When faults occur in transmission lines, fault discrimination is very important. If high impedance faults occur in transmission lines, it cannot be detected by overcurrent relays. The method using current and voltage cannot discriminate high impedance fault. Because of this reason this paper uses voltage and zero sequence current, and the proposed algorithm uses fuzzy logic method. This algorithm uses voltage and zero sequence current per period in case of faults. Single line ground fault and three-phase fault can be detective using voltage. Two-line ground fault and line to line fault and high impedance can be detected using zero sequence current. To prove the performance of the algorithm, it test algorithm with signal obtained from ATPDraw simulation.

  • PDF

A STUDY ON OPTIMAL UPGRADING VOLTAGE OF EHV GRID NETWORK-LYBIAN CASE (초고압 송전선로의 최적 격상전압 선정에 관한 연구-리비아국 사례)

  • Kim, Bong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1041-1043
    • /
    • 1997
  • When a new transmission line is planned to construct, the system voltage and the conductor size of the transmission line should be decided by both economical and technical point of view. This paper presents a methodology to determine the optimal voltage for upgrading the transmission system voltage of existing the extra high voltage grid network by meeting the requirements of the transmission cost minimization as well as technical constraints of thermal limit and stability limit in the transmission line. As a case study, calculated are optimal voltages versus distance and capacity of a practically applicable transmission line with 4 bundles 2 circuits. By this study 400kV was selected as the next higher voltage for the existing 220kV Libyan grid network.

  • PDF

Development of a Monitoring Equipment of Current and Potential on Power Transmission Line for 66kV

  • Nisiyama, Eiji;Kuwanami, Kenshi;Kawano, Mitsunori;Matsuda, Toyonori;Oota, I.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.41-44
    • /
    • 2003
  • We propose portable equipment that monitors current and voltage of high-potential power transmission lines. In the equipment, a current and voltage sensor are attached to an insulator that supports a power transmission line: A clamped to the power line and the detected current signal is transmitted to the ground station by a wireless optical link using transmission line is detected by a high resistance element, zinc oxide (ZnO). That acts as a potential divider between the power line and ground. We make an experimental device for 66kV power line and demonstrate that it can monitor currents proposed equipment is small-sized, light, and inexpensive in comparison with the conventional CT (current transformer) and PT (potential transformer) since it does not require high potential insulators and magnetic cores, further, the equipment is easily installed owing to its small size and its simple structure.

  • PDF

The analysis result of temporary operation of 765 kV transmission line as 345 kV rating (765 kV 송전선로의 345 kV 운전에 따른 계통 해석)

  • Woo, J.W.;Shim, E.B.;Kang, Y.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1647-1649
    • /
    • 1998
  • This paper describes the power frequency voltage and its countermeasure when a 765 kV transmission line is directly connected to a 345 kV line and operated at 345 kV voltage. The summary of this result is as follows : The western route of 765 kV transmission line doesn't need any countermeasure to reduce the power frequency voltage at the receiving end. The eastern route of 765 kV transmission needs 100 Mvar(3 phase) capacity of shunt reactor at the receiving end to reduce the power frequency voltage. The use of shunt reactors in the 765 kV transmission lines has unexpected problems, one of which is induction of high voltages on a de-energized circuit of two parallel lines. This paper examined the problem of resonance on two parallel transmission circuits in one routes.

  • PDF

Development of a Measuring Instrument of Current and Voltage on Power-Transmission Lines for the Construction of Energy-Network

  • Park, Kyi-Hwan;Jiang, Zhongwei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.107.2-107
    • /
    • 2001
  • We propose portable equipment that monitors a current and potential on high-potential power transmission lines. In the equipment, a current and voltage sensor are attached to a hollow insulator that supports a power transmission line: A current on a power line is detected by an air-core solenoidal coil clamped to the line and the detected current signal is transmitted to the ground station by using optical data link, A potential on a power transmission line is detected by a high resistance element, zinc oxide (ZnO) that acts as a potential divider between the power line and the ground. The equipment does not require high potential insulators and magnetic cores which. This leads to the following advantages of the equipment: (a) It is easily installed owing to its small size and its simple structure; (b) It operates in low ...

  • PDF

Series-Gap Characteristics of Polymeric Arrester for Transmission Line (송전선로용 폴리머 피뢰기의 직렬공극 특성)

  • Cho, Han-Goo;Yoo, Dae-Hoon;Lee, Young-Sun;Kim, Jong-Che
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.491-492
    • /
    • 2008
  • This paper describes the series-gap characteristics of transmission line arrester with switching and lightning impulse flashover test. The transmission line arrester exhibited external gap because it is must not flashover with switching impulse on the other hand it is must flashover with lightning impulse. In accordance, minimum and maximum length of series-gap was determinated with these tests. As gap length is increased flashover voltage was increased in the range of 315.4 kV~496.3 kV and negative polarity exhibited a high voltage. As a result, It was thought tat the series-gap length of transmission line arrester exhibited in the range of 580 mm~1100 mm.

  • PDF

Series-Gap Characteristics of Transmission Line Arrester with Switching and Lightning Impulse Flashover Test (개폐서지 및 뇌충격 섬락시험에 따른 송전 피뢰기의 직렬공극 특성)

  • Cho, Han-Goo;Yoo, Dae-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.484-485
    • /
    • 2007
  • This paper describes the series-gap characteristics of transmission line arrester with switching and lightning impulse flashover test. The transmission line arrester exhibited external gap because it is must not flashover with switching impulse on the other hand it is must flashover with lightning impulse. In accordance, minimum and maximum length of series-gap was determinated with these tests. As gap length is increased flashover voltage was increased in the range of 315.4 kV~496.3 kV and negative polarity exhibited a high voltage. As a result, It was thought tat the series-gap length of transmission line arrester exhibited in the range of 580 mm~1100 mm.

  • PDF

The Development of System for Measuring Ion Generated from HVDC Overhead Transmission Line (초고압 직류 가공 송전선로에서 발생되는 이온 계측시스템 개발)

  • Ju, Mun-No;Yang, Kwang-Ho;Lee, Dong-Il;Shin, Koo-Yong;Lim, Jae-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2035-2040
    • /
    • 2008
  • The electrical discharge of high voltage direct current(HVDC) overhead transmission line generate audible noise, radio noise, electric field, ion current and induced voltage on the ground. These items are major factors to design environmentally friendly configuration of DC transmission line. Therefore, HVDC transmission lines must be designed to keep all these corona effects within acceptable levels. Several techniques have been used to assess interference caused by ions on HVDC overhead transmission line. In this study, to assess the ion characteristic of DC line, the ion current density and induced voltage caused by ion flow were measured by plate electrodes manufactured from a metal flat board and charged bodies, respectively. The charged body has two types of cylinder and cylindrical plate. From the results of calibration experiments, the sensitivity of flat electrode and charged body can be obtained. At present, the developed system is used to investigate the ion generation characteristics of Kochang DC ${\pm}500kV$ test line.