• Title/Summary/Keyword: high uniformity

Search Result 993, Processing Time 0.034 seconds

A Basic Study on the Product Development of Dress Forms (의복 생산용 바디 개발을 위한 기초 연구)

  • Cui, Ming-Hai;Jung, Kyong-Won;Nam, Yun-Ja;Choi, Kueng-Mi
    • Fashion & Textile Research Journal
    • /
    • v.8 no.3
    • /
    • pp.317-325
    • /
    • 2006
  • The purposes of this study are to examine clothing businesses which are using dress forms and grasp the problems in apparel manufacturing process, to verify the size and shape of the dress forms for uniformity, to ascertain the uniformity between the dress forms being sold today and the somatotype of the target consumers. The following results were obtained. First, most of the clothing businesses used the existing dress forms in the company. The dress forms didn't reflect the somatotype of the current consumers. And the users satisfaction was below the average. Second, the size and shape of the dress forms being sold today had lack of uniformity between themselves. Third, the dress forms didn't reflect the shape characteristics as well as the size of the target consumers. Consequently, The dress forms need to have the following. First, It is necessary that the dress forms have various functions in a dress form in the future. Second, to get high satisfaction of clothing fit, we need to build up the data base of the consumers somatotype. The data base have to consist of not only circumference but also width, thickness, angle of the current consumers. Last, the further studies of the dress forms need to meet the clothing businesses demand.

CCD Non-uniformity Correction Method based on Pixel Non-Linearity Model (픽셀 비선형성 모델을 기반으로 한 영상센서 불균일 특성 보정)

  • Kim, Young-Sun;Kong, Jong-Pil;Heo, Haeng-Pal;Park, Jong-Euk;Yong, Sang-Soon
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.28-34
    • /
    • 2010
  • All pixels of image sensor do not react uniformly when the light of same radiance enters into the camera. This non-uniformity has a direct influence on the image quality. However we can overcome it by calibration process under the special test-setup. Usually it is used the algorithm to get the correction coefficients under the specific illumination condition. But, this method has drawback in the very low or very high illumination due to pixel non-linearity. This paper describes the robust algorithm, which calculates the correction coefficients based on the pixel non-linearity model, against thew hole radiance. The paper shows the non-uniformity test results with the own camera and the specified test equipments as well. The results shows the best performance over the entire radiance when this method is applied.

Analysis and Control of Uniformity by the Feed Gate Adaptation of a Granular Spreader (입제비료 살포기의 출구조절에 의한 균일도의 분석과 제어)

  • Kweon, G.;Grift, Tony E.;Miclet, Denis;Virin, Teddy;Piron, Emmanuel
    • Journal of Biosystems Engineering
    • /
    • v.34 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • A method was proposed which employed control of the drop location of fertilizer particles on a spinner disc to optimize the spread pattern uniformity. The system contained an optical sensor as a feedback mechanism, which measured discharge velocity and location, as well as particle diameters to predict a spread pattern of a single disc. Simulations showed that the feed gate adaptation algorithm produced high quality patterns for any given application rate in the dual disc spreader. The performance of the feed gate control method was assessed using data collected from a Sulky spinner disc spreader. The results showed that it was always possible to find a spread pattern with an acceptable CV lower than 15%, even though the spread pattern was obtained from a rudimentary flat disc with straight radial vanes. A mathematical optimization method was used to find the initial parameter settings for a specially designed experimental spreading arrangement, which included the feed gate control system, for a given flow rate and swath width. Several experiments were carried out to investigate the relationship between the gate opening and flow rate, disc speed and particle velocity, as well as disc speed and predicted landing location of fertilizer particles. All relationships found were highly linear ($r^2$ > 0.96), which showed that the time-of-flight sensor was well suited as a feedback sensor in the rate and uniformity controlled spreading system.

Comparative Analysis of Cartesian Trajectory and MultiVane Trajectory Using ACR Phantom in MRI : Using Image Intensity Uniformity Test and Low-contrast Object Detectability Test (ACR 팬텀을 이용한 Cartesian Trajectory와 MultiVane Trajectory의 비교분석 : 영상강도 균질성과 저대조도 검체 검출률 test를 사용하여)

  • Nam, Soon-Kwon;Choi, Joon-Ho
    • Journal of radiological science and technology
    • /
    • v.42 no.1
    • /
    • pp.39-46
    • /
    • 2019
  • This study conducted a comparative analysis of differences between cartesian trajectory in a linear rectangular coordinate system and MultiVane trajectory in a nonlinear rectangular coordinate system axial T1 and axial T2 images using an American College of Radiology(ACR) phantom. The phantom was placed at the center of the head coil and the top-to-bottom and left-to-right levels were adjusted by using a level. The experiment was performed according to the Phantom Test Guidance provided by the ACR, and sagittal localizer images were obtained. As shown in Figure 2, slices # 1 and # 11 were scanned after placing them at the center of a $45^{\circ}$ wedge shape, and a total of 11 slices were obtained. According to the evaluation results, the image intensity uniformity(IIU) was 93.34% for the cartesian trajectory, and 93.19% for the MultiVane trajectory, both of which fall under the normal range in the axial T1 image. The IIU for the cartesian trajectory was 0.15% higher than that for the MultiVane trajectory. In axial T2, the IIU was 96.44% for the cartesian trajectory, and 95.97% for the MultiVane trajectory, which fall under the normal range. The IIU for the cartesian trajectory was by 0.47% higher than that for the MultiVane trajectory. As a result, the cartesian technique was superior to the MultiVane technique in terms of the high-contrast spatial resolution, image intensity uniformity, and low-contrast object detectability.

Analysis of Optimal Placement Proposal of HVAC System in Smart Greenhouse using CFD Simulation

  • Minji Baek;Hyunsang Cho;Doyoung Lee;Jeonghwan Seo;Jimin Kim;Hyounseung Jang
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1316-1316
    • /
    • 2024
  • Greenhouses require various control systems to create an optimal environment, and from an architectural engineering perspective, the uniformity of the internal environment is crucial for crop growth. However, greenhouses are structurally exposed to external weather conditions, leading to a high probability of variations in temperature, humidity, CO2 levels, lighting, etc., across different zones within the greenhouse. Such non-uniformity can impact the growth rate, quality, and yield of crops, highlighting the necessity of maintaining a consistent environment within the greenhouse. To address this, experiments utilizing Computational Fluid Dynamics (CFD) simulations were conducted targeting greenhouses in Pocheon, South Korea, focusing on the central heating and cooling systems to propose an optimal design considering the uniformity of internal temperatures. Subsequently, validation was performed using measurements from temperature and humidity sensors within the greenhouses. The heating and cooling systems operate based on indoor temperatures, activating cooling when indoor temperatures exceed the set cooling temperature in summer and heating when temperatures fall below the set heating temperature in winter. A standard greenhouse model was set as case 1, and experiments were conducted by adjusting the position and spacing of the fabric ducts of the heating and cooling systems, resulting in six categorized cases. Variations in temperature and humidity distribution were observed among the cases, and quantitative analysis provided optimal positions and spacing for the fabric ducts. The results of this study can serve as foundational data for developing environmental control solutions for agricultural facilities.

Fabrication Method of High-density and High-uniformity Solder Bump without Copper Cross-contamination in Si-LSI Laboratory (실리콘 실험실에 구리 오염을 방지 할 수 있는 고밀도/고균일의 Solder Bump 형성방법)

  • 김성진;주철원;박성수;백규하;이희태;송민규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.4
    • /
    • pp.23-29
    • /
    • 2000
  • We demonstrate the fabrication method of high-density and high-quality solder bump solving a copper (Cu) cross-contamination in Si-LSI laboratory. The Cu cross-contamination is solved by separating solder-bump process by two steps. Former is via-formation process excluding Cu/Ti under ball metallurgy (UBM) layer sputtering in Si-LSI laboratory. Latter is electroplating process including Ti-adhesion and Cu-seed layers sputtering out of Si-LSI laboratory. Thick photoresist (PR) is achieved by a multiple coating method. After TiW/Al-electrode sputtering for electroplating and via formation in Si-LSI laboratory, Cu/Ti UBM layer is sputtered on sample. The Cu-seed layer on the PR is etched during Cu-electroplating with low-electroplating rate due to a difference in resistance of UBM layer between via bottom and PR. Therefore Cu-buffer layer can be electroplated selectively at the via bottom. After etching the Ti-adhesion layer on the PR, Sn/Pb solder layer with a composition of 60/40 is electroplated using a tin-lead electroplating bath with a metal stoichiometry of 60/40 (weight percent ratio). Scanning electron microscope image shows that the fabricated solder bump is high-uniformity and high-quality as well as symmetric mushroom shape. The solder bumps with even 40/60 $\mu\textrm{m}$ in diameter/pitch do not touch during electroplating and reflow procedures. The solder-bump process of high-uniformity and high-density with the Cu cross-contamination free in Si-LSI laboratory will be effective for electronic microwave application.

  • PDF

A Novel Approach for Controlling Process Uniformity with a Large Area VHF Source for Solar Applications

  • Tanaka, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.146-147
    • /
    • 2011
  • Processing a large area substrate for liquid crystal display (LCD) or solar panel applications in a capacitively coupled plasma (CCP) reactor is becoming increasingly challenging because of the size of the substrate size is no longer negligible compared to the wavelength of the applied radio frequency (RF) power. The situation is even worse when the driving frequency is increased to the Very High Frequency (VHF) range. When the substrate size is still smaller than 1/8 of the wavelength, one can obtain reasonably uniform process results by utilizing with methods such as tailoring the precursor gas distribution by adjustingthrough shower head hole distribution or hole size modification, locally adjusting the distance between the substrate and the electrode, and shaping shower head holes to modulate the hollow cathode effect modifying theand plasma density distribution by shaping shower head holes to adjust the follow cathode effect. At higher frequencies, such as 40 MHz for Gen 8.5 (2.2 m${\times}$2.6 m substrate), these methods are not effective, because the substrate is large enough that first node of the standing wave appears within the substrate. In such a case, the plasma discharge cannot be sustained at the node and results in an extremely non-uniform process. At Applied Materials, we have studied several methods of modifying the standing wave pattern to adjusting improve process non-uniformity for a Gen 8.5 size CCP reactor operating in the VHF range. First, we used magnetic materials (ferrite) to modify wave propagation. We placed ferrite blocks along two opposing edges of the powered electrode. This changes the boundary condition for electro-magnetic waves, and as a result, the standing wave pattern is significantly stretched towards the ferrite lined edges. In conjunction with a phase modulation technique, we have seen improvement in process uniformity. Another method involves feeding 40 MHz from four feed points near the four corners of the electrode. The phase between each feed points are dynamically adjusted to modify the resulting interference pattern, which in turn modulate the plasma distribution in time and affect the process uniformity. We achieved process uniformity of <20% with this method. A third method involves using two frequencies. In this case 40 MHz is used in a supplementary manner to improve the performance of 13 MHz process. Even at 13 MHz, the RF electric field falls off around the corners and edges on a Gen 8.5 substrate. Although, the conventional methods mentioned above improve the uniformity, they have limitations, and they cannot compensate especially as the applied power is increased, which causes the wavelength becomes shorter. 40 MHz is used to overcome such limitations. 13 MHz is applied at the center, and 40 MHz at the four corners. By modulating the interference between the signals from the four feed points, we found that 40 MHz power is preferentially channeled towards the edges and corners. We will discuss an innovative method of controlling 40 MHz to achieve this effect.

  • PDF

A Study on the Thermal Characteristics of High Pressure Hydrogen Storage Tank according to Nozzle Angle and Length/Diameter Ratio (고압수소 저장용기의 노즐 각도 및 길이/직경비에 따른 열적 특성 연구)

  • JEONG HWAN YOON;JUNYEONG KWON;KYUNG SOOK JEON;JIN SIK OH;SEUNG JUN OH
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.5
    • /
    • pp.431-438
    • /
    • 2023
  • Recently, study on hydrogen is being conducted due to environmental pollution and fossil fuel depletion. High-pressure gas hydrogen commonly used is applied to vehicle and tube trailers. In particular, high-pressure hydrogen storage tank for vehicles must comply with the guidelines stipulated in SAE J2601. There is a charging temperature limitation condition for the safety of the storage tank material. In this study, numerical analysis method were verified based on previous studies and the nozzle angle was changed for thermal management to analyze the increase in forced convection effect and energy uniformity due to the promotion of circulation flow. The previously applied high-pressure hydrogen storage tank has a length/diameter ratio of about 2.4 and was analyzed by comparing the length/diameter ratio with 8. As a result, the circulation flow of hydrogen flowing into the high-pressure hydrogen storage tank is promoted at a nozzle angle of 30° than the straight nozzle and accordingly, the effect of suppressing temperature rise by energy uniformity and forced convection was confirmed.

Accuracy Evaluation of CT-Based Attenuation Correction in SPECT with Different Energy of Radioisotopes (SPECT/CT에서 CT를 기반으로 한 Attenuation Correction의 정확도 평가)

  • Kim, Seung Jeong;Kim, Jae Il;Kim, Jung Soo;Kim, Tae Yeop;Kim, Soo Mee;Woo, Jae Ryong;Lee, Jae Sung;Kim, Yoo Kyeong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.1
    • /
    • pp.25-29
    • /
    • 2013
  • Purpose: In this study, we evaluated the accuracy of CT-based attenuation correction (AC) under the conventional CT protocol (140 kVp, on average 50-60 keV) by comparing the SPECT image qualities of different energy of radioisotopes, $^{201}Tl,\;^{99m}Tc$ and $^{131}I$. Materials and Methods: Using a cylindrical phantom, three different SPECT scans of $^{201}Tl$ (70 keV, 55.5 MBq), $^{99m}Tc$ (140 keV, 281.2 MBq) and $^{131}I$ (364 keV, 96.2 MBq) were performed. The CT image was obtained with 140 kVp and 2.5 mA in GE Hawkeye 4. The OSEM reconstruction algorithm was performed with 2 iterations and 10 subsets. The experiments were performed in the 4 different conditions; non-AC and non-scatter correction (SC), only AC, only SC, AC and SC in terms of uniformity and center to peripheral ratio (CPR). Results: The uniformity was calculated from the uniform whole region in the reconstructed images. For $^{201}Tl$ and $^{99m}Tc$, the uniformities were improved by about 10-20% AC was applied, but these were decreased by about 2% as SC was applied. The uniformity of $^{131}I$ was slightly increased as both AC and SC were applied. The CPR of the reconstructed image was close to one, when AC was applied for $^{201}Tl$ and $^{99m}Tc$ scans and $^{131}I$ was distant from 1 and that is only AC. Conclusion: The image uniformity improved by AC on low energy likely to $^{201}Tl$ and $^{99m}Tc$. However, image uniformity of high energy such as $^{131}I$ was improved, when both AC and SC was applied.

  • PDF

Highly power-efficient and reliable light-emitting diode backlight driver IC for the uniform current driving of medium-sized liquid crystal displays

  • Hong, Seok-In;Nam, Ki-Soo;Jung, Young-Ho;Ahn, Hyun-A;In, Hai-Jung;Kwon, Oh-Kyong
    • Journal of Information Display
    • /
    • v.13 no.2
    • /
    • pp.73-82
    • /
    • 2012
  • In this paper, a light-emitting diode (LED) backlight driver integrated circuit (IC) for medium-sized liquid crystal displays (LCDs) is proposed. In the proposed IC, a linear current regulator with matched internal resistors and an adaptive phase-shifted pulse-width modulation (PWM) dimming controller are also proposed to improve LED current uniformity and reliability. The double feedback loop control boost converter is used to achieve high power efficiency, fast transient characteristic, and high dimming frequency and resolution. The proposed IC was fabricated using the 0.35 ${\mu}m$ bipolar-CMOS-DMOS (BCD) process. The LED current uniformity and LED fault immunity of the proposed IC were verified through experiments. The measured power efficiency was 90%; the measured LED current uniformity, 97%; and the measured rising and falling times of the LED current, 86 and 7 ns, respectively. Due to the fast rising and falling characteristics, the proposed IC operates up to 39 kHz PWM dimming frequency, with an 8-bit dimming resolution. It was verified that the phase difference between the PWM dimming signals is changed adaptively when LED fault occurs. The experiment results showed that the proposed IC meets the requirements for the LED backlight driver IC for medium-sized LCDs.