• Title/Summary/Keyword: high temperature reactors

Search Result 206, Processing Time 0.028 seconds

Simulation of the Digital Image Processing Algorithm for the Coating Thickness Automatic Measurement of the TRISO-coated Fuel Particle

  • Kim, Woong-Ki;Lee, Young-Woo;Ra, Sung-Woong
    • Journal of Information Processing Systems
    • /
    • v.1 no.1 s.1
    • /
    • pp.36-40
    • /
    • 2005
  • TRISO (Tri-Isotropic)-coated fuel particle is widely applied due to its higher stability at high temperature and its efficient retention capability for fission products in the HTGR (high temperature gas-cooled reactor), one of the highly efficient Generation IV reactors. The typical ball-type TRISO-coated fuel particle with a diameter of about 1 mm is composed of a nuclear fuel particle as a kernel and of outer coating layers. The coating layers consist of a buffer PyC, inner PyC, SiC, and outer PyC layer. In this study, a digital image processing algorithm is proposed to automatically measure the thickness of the coating layers. An FBP (filtered backprojection) algorithm was applied to reconstruct the CT image using virtual X-ray radiographic images for a simulated TRISO-coated fuel particle. The automatic measurement algorithm was developed to measure the coating thickness for the reconstructed image with noises. The boundary lines were automatically detected, then the coating thickness was circularly by the algorithm. The simulation result showed that the measurement error rate was less than 1.4%.

Impact of molybdenum cross sections on FHR analysis

  • Ramey, Kyle M.;Margulis, Marat;Read, Nathaniel;Shwageraus, Eugene;Petrovic, Bojan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.817-825
    • /
    • 2022
  • A recent benchmarking effort, under the auspices of the Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA), has been made to evaluate the current state of modeling and simulation tools available to model fluoride salt-cooled high temperature reactors (FHRs). The FHR benchmarking effort considered in this work consists of several cases evaluating the neutronic parameters of a 2D prismatic FHR fuel assembly model using the participants' choice of simulation tools. Benchmark participants blindly submitted results for comparison with overall good agreement, except for some which significantly differed on cases utilizing a molybdenum-bearing control rod. Participants utilizing more recently updated explicit isotopic cross sections had consistent results, whereas those using elemental molybdenum cross sections observed reactivity differences on the order of thousands of pcm relative to their peers. Through a series of supporting tests, the authors attribute the differences as being nuclear data driven from using older legacy elemental molybdenum cross sections. Quantitative analysis is conducted on the control rod to identify spectral, reaction rate, and cross section phenomena responsible for the observed differences. Results confirm the observed differences are attributable to the use of elemental cross sections which overestimate the reaction rates in strong resonance channels.

New test method for real-time measurement of SCC initiation of thin disk specimen in high-temperature primary water environment

  • Geon Woo Jeon;Sung Woo Kim;Dong Jin Kim;Chang Yeol Jeong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4481-4490
    • /
    • 2022
  • In this study, a new rupture disk corrosion test (RDCT) method was developed for real-time detection of stress corrosion cracking (SCC) initiation of Alloy 600 in a primary water environment of pressurized water reactors. In the RDCT method, one side of a disk specimen was exposed to a simulated primary water at high temperature and pressure while the other side was maintained at ambient pressure, inducing a dome-shaped deformation and tensile stress on the specimen. When SCC occurs in the primary water environment, it leads to the specimen rupture or water leakage through the specimen, which can be detected in real-time using a pressure gauge. The tensile stress applied to the disk specimen was calculated using a finite element analysis. The tensile stress was calculated to increase as the specimen thickness decreased. The SCC initiation time of the specimen was evaluated by the RDCT method, from which result it was found that the crack initiation time decreased with the decrease of specimen thickness owing to the increase of applied stress. After the SCC initiation test, many cracks were observed on the specimen surface in an intergranular fracture mode, which is a typical characteristic of SCC in the primary water environment.

Effectiveness of Ni-based and Fe-based cladding alloys in delaying hydrogen generation for small modular reactors with increased accident tolerance

  • Alan Matias Avelar;Fabio de Camargo;Vanessa Sanches Pereira da Silva;Claudia Giovedi;Alfredo Abe;Marcelo Breda Mourao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.156-168
    • /
    • 2023
  • This study investigates the high temperature oxidation behaviour of a Ni-20Cr-1.2Si (wt.%) alloy in steam from 1200 ℃ to 1350 ℃ by Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD). The results demonstrate that exposed Ni-based alloy developed a thin oxide scale, consisted mainly of Cr2O3. The oxidation kinetics obtained from the experimental results was applied to evaluate the hydrogen generation considering a simplified reactor core model with different cladding alloys following an unmitigated Loss-Of-Coolant Accident (LOCA) scenario in a hypothetical Small Modular Reactor (SMR). Overall, experimental data and simulations results show that both Fe-based and Ni-based alloys may enhance cladding survivability, delaying its melting, as well as reducing hydrogen generation under accident conditions compared to Zr-based alloys. However, a substantial neutron absorption occurs when Ni-based alloys are used as cladding for current uranium-dioxide fuel systems, even when compared to Fe-based alloys.

Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates (변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성)

  • Song J. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.275-278
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it finds use in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. In order to design optimal structural parts made of INCONEL 718, accurate understanding of material's mechanical properties, dynamic behavior and fracture characteristic as a function of strain rates are required. This paper concerned with the dynamic material properties of the INCONEL 718 for the various strain rates. The dynamic response of the INCONEL 718 at intermediate strain rate is obtained from the high speed tensile test machine test and at the high strain rate is from the split Hopkinson pressure bar test. Based on the experimental results, the effects of strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure are evaluated. Experimental results from both quasi-static and high strain rate up to the 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of INCONEL 718.

  • PDF

Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates (변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성)

  • Song J. H.;Huh H.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.559-564
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it is utilized in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. Accurate understanding of material's mechanical properties with various strain rates is required in order to guarantee the reliability of structural parts made of INCONEL 718. This paper is concerned with the dynamic material properties of the INCONEL 718 at various strain rates. The dynamic response of the INCONEL 718 at the intermediate strain rate is obtained from the high speed tensile test and at the high strain rate is from the split Hopkinson pressure bar test. The effect of the strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure is evaluated with the experimental results. Experimental results from both the quasi-static and the high strain rate up to 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of rNCONEL 718.

Study of oxidation behavior and tensile properties of candidate superalloys in the air ingress simulation scenario

  • Bin Du;Haoxiang Li;Wei Zheng;Xuedong He;Tao Ma;Huaqiang Yin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.71-79
    • /
    • 2023
  • Air ingress incidents are major safety accidents in very-high-temperature reactors (VHTRs). Air containing a high volume fraction of oxygen may cause severe oxidation of core components at the VHTR, especially for the significantly thin alloy tube wall in the intermediate heat exchanger (IHE). The research objects of this study are Inconel 617 and Incoloy 800H, two candidate alloys for IHE in VHTR. The air ingress accident scenario is simulated with high-temperature air flow at 950 ℃. A continuous oxide scale was formed on the surfaces of both the alloys after the experiment. Because the oxide scale of Inconel 617 has a loose structure, whereas that of Incoloy 800H is denser, Inconel 617 exhibited significantly more severe internal oxidation than Incoloy 800H. Further, Inconel 617 showed a significant decrease in ultimate tensile strength and plasticity after aging for 200 h, whereas Incoloy 800H maintained its tensile properties satisfactorily. Through control experiment under vacuum, we preliminarily concluded that serious internal oxidation is the primary reason for the decline in the tensile properties of Inconel 617.

Effect of ZnO Nanoparticle Presence on SCC Mitigation in Alloy 600 in a Simulated Pressurized Water Reactors Environment

  • Sung-Min Kim;Woon Young Lee;Sekown Oh;Sang-Yul Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.401-411
    • /
    • 2023
  • This study investigates the synthesis, characterization, and application of zinc oxide (ZnO) nanoparticles for corrosion resistance and stress corrosion cracking (SCC) mitigation in high-temperature and high-pressure environments. The ZnO nanoparticles are synthesized using plasma discharge in water, resulting in rod-shaped particles with a hexagonal crystal structure. The ZnO nanoparticles are applied to Alloy 600 tubes in simulated nuclear power plant atmospheres to evaluate their effectiveness. X-ray diffraction and X-ray photoelectron spectroscopy analysis reveals the formation of thermodynamically stable ZnCr2O4and ZnFe2O4 spinel phases with a depth of approximately 35 nm on the surface after 240 hours of treatment. Stress corrosion cracking (SCC) mitigation experiments reveal that ZnO treatment enhances thermal and mechanical stability. The ZnO-treated specimens exhibit increased maximum temperature tolerance up to 310 ℃ and higher-pressure resistance up to 60 bar compared to non-treated ZnO samples. Measurements of crack length indicate reduced crack propagation in ZnO-treated specimens. The formation of thermodynamically stable Zn spinel structures on the surface of Alloy 600 and the subsequent improvements in surface properties contribute to the enhanced durability and performance of the material in challenging high-temperature and high-pressure environments. These findings have significant implications for the development of corrosion-resistant materials and the mitigation of stress corrosion cracking in various industries.

Characterization of the effect of He+ irradiation on nanoporous-isotropic graphite for molten salt reactors

  • Zhang, Heyao;He, Zhao;Song, Jinliang;Liu, Zhanjun;Tang, Zhongfeng;Liu, Min;Wang, Yong;Liu, Xiangdong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1243-1251
    • /
    • 2020
  • Irradiation-induced damage of binderless nanoporous-isotropic graphite (NPIG) prepared by isostatic pressing of mesophase carbon microspheres for molten salt reactor was investigated by 3.0 MeV He+ irradiation at room temperature and high temperature of 600 ℃, and IG-110 was used as the comparation. SEM, TEM, X-ray diffraction and Raman spectrum are used to characterize the irradiation effect and the influence of temperature on graphite radiation damage. After irradiation at room temperature, the surface morphology is rougher, the increase of defect clusters makes atom flour bend, the layer spacing increases, and the catalytic graphitization phenomenon of NPIG is observed. However, the density of defects in high temperature environment decreases and other changes are not obvious. Mechanical properties also change due to changes in defects. In addition, SEM and Raman spectra of the cross section show that cracks appear in the depth range of the maximum irradiation dose, and the defect density increases with the increase of irradiation dose.

A study on degaradation stabilization of organic material through aerobic treatment before landfill of domestic waste (생활폐기물의 호기성처리를 통한 유기물 분해안정화에 관한 연구)

  • Lee, Hyun-Hee;Phae, Chae-Gun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.4
    • /
    • pp.79-89
    • /
    • 2003
  • The purpose of this study is to investigate appropriate environmental factors when domestic waste is decomposed as aerobic digestion. So stabilization degree was measured after the waste is mixed as certain rates and water content was controlled by 55% and 60%. Variation of VS showed food waste in reactors of number 1, 2, 3, 4 and 5 was decomposed fully except reactor of number 6. Decomposition degree of VS in reactors of number 1, 2, 3 and 4 was not different high because Vinyl and plastic inserted played role bulking agent in reactor number 1, 2, 3 and 4. In reactors, maximum temperature indicated $57{\sim}59^{\circ}C$ and temperatures in reactors 1, 2, 3 and 4 were higher and remained longer than in reactor 5 and 6 for 2~4 days. Variation of $CO_2$ was similar to that of VS. The reduction rate of water content was low because moisture generated by oxidation fever of microorganism did not evaporated well. pH was low in the beginning of the reaction however, as time passed, it increased slightly and remained regular pattern. EC and C/N showed the same pattern as pH. Settlement and weight reduction rates were similar to the factors above. Reactor 1, 2, 3, and 4 showed higher settlement and weight reduction rate than reactor 5 and 6.

  • PDF