• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.042 seconds

Effect of Recovery of Pulmonary Function in Hypothermic Lung Preservation (肺의 低溫保存法이 肺機能 回復에 미치는 영향)

  • Lee, Man Bok;Kim, U Jong;Gang, Chang Hui;Lee, Gil No
    • Journal of Chest Surgery
    • /
    • v.30 no.3
    • /
    • pp.253-253
    • /
    • 1997
  • Hypothermia during lung preservation decreases metabolic processes. After the rabbit lung was flushed with modified Euro-Collins solution, heart-lung block was harvested and the left lung was assessed after ligation of the right pulmonary artery and right main-stem bronchus. Heart-lung block was immersed in the same solution for 6 hours. The modified Euro-Collins solution and storage temperature of group 1(10 cases) was 4t, roup 2(10 cases) was l0℃. On completion of the storage period, the left lung was ventilated and reperfused with blood u:high used a cross-circulating paracorporeal rabbit as a "biologic deoxygenator" for 60 minutes. Pulmonary artery pressure, airway pressure, difference in oxygen tension between mow and outflow perfusate and degree of pulmonary edema were assessed at 10-minute intervals while the left lung was ventilated at 0.8 of the inspired oxygen fraction. The mean pulmonary venous oxygen tensions at 10 and 60 minutes after reperfusion were 209.52±42.46 and 103.48± 15.96 mmHg in group I versus 247.78±36.19 and 147.91 ± 11.07 mmHg in group II(p=0.049, (0.0001). The mean alveolar-arterial oxygen differences at 20 and 60 minutes after reperfusion were 357. 95± 12.84 and 437.31 14.26 mmHg in group I versus 310.88±3).47 and )90.93± 15.86 mmHg in group II (p=0.0092, (0.0001). The mean pulmonary arterial pressures at 10 and 60 minutes after reperfusion were 40.56± 18.66 and 87. 2± 17.22 mmHg in group I versus 31.22±6.84 and 65.78± 11.02 mmHg in group rl (p : 0.048, 0.0062). The mean pulmonary vascular resistances at 10 and 60 minutes after reperfusion were 2.69±0.85 and 4.36±0.86 mmHg/ml/min in group I versus 1.99±0.39 and 3.29±0.55 mmHg/ml/min in group II(p : 0.0323, 0.0062). There were no difference between groups in peak airway pressure, lung compliance and degree of pulmonary edema. In conclusion that preservation of lung at l0℃ was superior to preservation at 4℃.

Experimental Studies on Extracorporeal Circulation by Rygg-Kyvsgaard Heart-Lung Machine, Hartman`s Solution Prime,and Moderate Hypothermia: [Part I] (Hartmann`s 용액으로 충진한 혈희석 체외순환에 관한 실험적 연구: (1보: 심폐기 Rygg-Kyvsgaard 의 혈산화와 혈압 및 혈액상에 미치는 영향))

  • 지행옥
    • Journal of Chest Surgery
    • /
    • v.4 no.2
    • /
    • pp.69-80
    • /
    • 1971
  • Total body perfusion using Rygg-Kyvsgaard Heart-Lung-Machine, Mark IV, Polystan was attempted in the dogs by the hemodilution method with total prime of buffered Hartman's solution and under hypothermia. The first of all, the functions of Rygg--Kyvsgaard Heart-Lung-Machine and the effects of the hemodilution perfusion by buffered Hartman's solution was studied. At the same time the changes of blood pressure, oxygen consumption, and influence on the blood pictures were observed before, during, and in 1-3 days after perfusion. Hemodilution rates were the average 74. 22cc/Kg(the ranges of 67 to 81 cc/Kg) and perfusion flow rates were maintained in the mean 62. 6cc/Kg/min., Although it was possible to check up to 87 cc/ Kg/min. The total body perfusion continued for 60-80 minutes. Hypothermia was employed between $36^{\circ}C$ and $32^{\circ}C$ of the rectal temperature. Arterial pressure was ranged approximately between 68mmHg and 149mmHg, but generally, it was maintained over 80mmHg. Venous pressure was measured between 6.5cm $H_2O$and 11.5cm $H_2O$. Optimum oxygenation can be expected when oxygen flow into the disposable bubble oxygenator was maintained approximately at 3.5 L/min .. Inthis way, the oxygen contents were measured in the mean value of 13.11${\pm}$O.56 vol. % of arterial blood and 8.67+1.08 vol.% of venous blood(P${\pm}$0.86 vol.% in arteriovenous oxygen difference and 2. 97${\pm}$0.62cc/Kg in oxygen consumption were calculated. According to these dates, it is as plain as pikestaff that excellent oxygenation and good tissue perfusion was accomplished. Erythrocyte, hemoglobin and hematocrit were decreased about 38% during extracorporeal circulation and these were not recovered until 1-3 days after perfusion. These decrease was resulted from relatively high degree of hemodilution rate and no blood transfusion to compensate during these experimental studies. The platelets were also decreased about 76% during perfusion, but on the contrary, it was increased progressively after perfusion and in 1-3 days after perfusion was returned to the control level. Leucocyte were also decreased during perfusion, but it was increased progessively after perfusion and in 1-3 days after perfusion exceed the control level. This increase was resulted from postoperative infection of the wound, but its analysis were not changed significantly.

  • PDF

Study of the Electrical Conductivity of the $({\alpha}-Nb_2O_5)_{1-x^-}(PbO)_x$ Solid Solution ($({\alpha}-Nb_2O_5)_{1-x^-}(PbO)_x$ 고용체의 전기전도도)

  • Roh, Kwon-Sun;Ryu, Kwang-Sun;Jun, Jong-Ho;Lee, Sung-Ju;Yo, Chul-Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.625-629
    • /
    • 1991
  • The electrical conductivity of the Niobium Oxide-Lead Oxide systems containing 2.5, 5.0, 7.5, and 10.0 mol% of Lead Oxide has been measured in a temperature range 700${\sim}$$1100^{\circ}C$ under oxygen partial pressure of 2.0 ${\times}$ $10^{-1}$${\sim}$1.0 ${\times}$ $10^{-5}$ atm. The electrical conductivities of the system decreased with increasing PbO mol% and varied from $10^{-5}$ to $10^{-1}$ $ohm^{-1}$ $cm^{-1}$. The activation energy for conductivity was about 1.70 eV. The oxygen pressure dependence of electrical conductivity revealed that the system was a mixed conductor between ionic and electronic conductivities at high oxygen pressures and a n-type electronic conductivity with oxygen pressure dependence of -1/4 order at low oxygen pressures. The defect structure and electrical conduction mechanism of the system have been discussed with the data obtained.

  • PDF

춘천-홍천 지역 용두리 편마암 복합체내에 산출하는 남정석: 변성지구조적 의의

  • 조문섭;김종욱
    • The Journal of the Petrological Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1993
  • We report on kyanite newly found in the Yongduri gneiss complex of the Chuncheon-Hongcheon area, central Gyeonggi massif. Major mineral assemblage of quartzofeldspathic gneisses in the study area consists of biotite+ garnet+ sillimanite + plagioclase+ quartz${\pm}$kyanite${\pm}$K-feldspar${\pm}$muscovite. Kyanite occurs in four samples, and coexists with sillimanite in three of these samples. In most cases, kyanite is anhedral to subhedral, ranges up to Imm in the maximum dimension, and occurs as metastable relict grains. These observations indicate that the Yongduri gneiss complex has experienced a medium-pressure type metamorphism, followed by low-pressure type one belonging to the sillimanite+K-feldspar zone. Average temperature and pressure of the peak metamorphism are $683{\pm}62^{\circ}C$ and 4.9-5.5 kbar, respectively, when the existing chemical data are re-interpreted. In conjunction with the finding of kyanite in the Cheongpyeong-Gapyeong area (Lee and Cho, 19921, this study demonstrates that kyanite may occur regionally in central Gyeonggi gneiss complex. Moreover, the persistence of kyanite even after the high-T metamorphism of the sillimanitetK-feldspar zone suggests that the central Gyeonggi massif has experienced a tectonometamorphic evolution characterized by a rapid uplift.

  • PDF

Crystal growth studies of $SF_6$ clathrate hydrate ($SF_6$ 하이드레이트 결정의 성장 특성에 대한 연구)

  • Lee, Yoon-Seok;Lee, Ju-Dong;Lee, Bo-Ram;Lee, Hyun-Ju;Lee, Eun-Kyung;Kim, Soo-Min;Kim, Young-Seok;Yoon, Seog-Young;Kim, Yang-Do
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.228-236
    • /
    • 2009
  • In this study, we investigated morphological characteristics of $SF_6$ clathrate hydrate crystals to understand its formation and growth mechanism. $SF_6$ clathrate hydrate crystals were formed in high-pressure reaction cell charged with pure water and $SF_6$ gas at constant pressure and temperature. Two-phase ($SF_6$ gas/aqueous solution) and three-phase ($SF_6$ gas/aqueous solution/$SF_6$ liquid) conditions were investigated, In both conditions, dendritic shape hydrate crystals were grown as like fibriform crystals along upward growth direction at the gas/aqueous solution interface. In the case of the reaction process of three-phase condition, when the $SF_6$ gas bubbles which were generated in $SF_6$ liquid phase due to the reduction of reaction cell pressure stuck to the gas/aqueous interfaces, the hydrate phase were appeared at the surface of the bubbles. This paper presents the detail growth characteristics of $SF_6$ hydrate crystals including crystal nucleation, migration, growth and interference.

Robust Design for Showerhead Thermal Deformation

  • Gong, Dae-Wi;Kim, Ho-Jun;Lee, Seung-Mu;Won, Je-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.150.1-150.1
    • /
    • 2014
  • Showerhead is used as a main part in the semiconductor equipment. The face plate flatness should remain constant and the cleaning performance must be gained to keep the uniformity level of etching or deposition in chemical vapor deposition process. High operating temperature or long period of thermal loading could lead the showerhead to be deformed thermally. In some case, the thermal deformation appears very sensitive to showerhead performance. This paper describes the methods for robust design using computational fluid dynamics. To reveal the influence of the post distribution on flow pattern in the showerhead cavity, numerical simulation was performed for several post distributions. The flow structure appears similar to an impinging flow near a centered baffle in showerhead cavity. We took the structure as an index to estimate diffusion path. A robust design to reduce the thermal deformation of showerhead can be achieved using post number increase without ill effect on flow. To prevent the showerhead deformation by heat loading, its face plate thickness was determined additionally using numerical simulation. The face plate has thousands of impinging holes. The design key is to keep pressure drop distribution on the showerhead face plate with the holes. This study reads the methodology to apply to a showerhead hole design. A Hagen-Poiseuille equation gives the pressure drop in a fluid flowing through such hole. The assumptions of the equation are the fluid is viscous-incompressible and the flow is laminar fully developed in a through hole. An equation can be expressed with radius R and length L related to the volume flow rate Q from the Hagen-Poiseuille equation, $Q={\pi}R4{\Delta}p/8{\mu}L$, where ${\mu}$ is the viscosity and ${\Delta}p$ is the pressure drop. In present case, each hole has steps at both the inlet and the outlet, and the fluid appears compressible. So we simplify the equation as $Q=C(R,L){\Delta}p$. A series of performance curves for a through hole with geometric parameters were obtained using two-dimensional numerical simulation. We obtained a relation between the hole diameter and hole length from the test cases to determine hole diameter at fixed hole length. A numerical simulation has been performed as a tool for enhancing showerhead robust design from flow structure. Geometric parameters for the design were post distribution and face plate thickness. The reinforced showerhead has been installed and its effective deposition profile is being shown in factory.

  • PDF

Study of CO2 Absorption Characteristic and Synthesis of 1-(2-methoxyethyl)-3-methylimidazoLium Methanesulfonate Ionic Liquid (1-(2-methoxyethyl)-3-methylimidazolium Methanesulfonate 이온성 액체 합성 및 CO2 흡수 특성 연구)

  • Jin, Yu Ran;Jung, Yoon Ho;Park, So Jin;Baek, Il Hyun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.35-40
    • /
    • 2012
  • In this study, 1-(2-methoxyethyl)-3-methylimidazolium methanesulfonate ionic liquid has been synthesized, characterized and tested with respect to carbon dioxide absorption with the aim to use it as advanced absorbent materials in fossil fuel processing. The ionic liquid was synthesized by a one step method, low cost. The thermal and chemical stability of selected ionic liquid has been investigated by DSC, TGA and the structure was verified by $^1H$-NMR spectroscopy. The solubility of carbon dioxide in the methanesulfonate-based ionic liquids were measured using a high-pressure equilibrium apparatus equipped with a variable-volume view cell at 30, 50 and $70^{\circ}C$ and pressure up to 195 bar. The results show that carbon dioxide solubilities of 1-(2-methoxyethyl)-3-methylimidazolium methanesulfonate increased with pressure increasing and temperature decreasing, and the carbon dioxide absorption capacity showed 27.6 $CO_2/IL$(g/kg) at $30^{\circ}C$, 13 bar.

Study of the effect of vacuum annealing on sputtered SnxOy thin films by SnO/Sn composite target (SnO/Sn 혼합 타겟으로 스퍼터 증착된 SnO 박막의 열처리 효과)

  • Kim, Cheol;Cho, Seungbum;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.43-48
    • /
    • 2017
  • Conductive $Sn_xO_y$ thin films were fabricated via RF reactive sputtering using SnO:Sn (80:20 mol%) composite target. The composite target was used to produce a chemically stable composition of $Sn_xO_y$ thin film while controlling structural defects by chemical reaction between tin and oxygen. During sputtering pressure, RF power, and substrate temperature were fixed, and oxygen partial pressure was varied from 0% to 12%. Annealing process was carried out at $300^{\circ}C$ for 1 hour in vacuum. Except $P_{O2}=0%$ sample, all samples showed the transmittance of 80~90% and amorphous phase before and after annealing. Electrically stable p-type $Sn_xO_y$ thin film with high transmittance was only obtained from the oxygen partial pressure at 12%. The carrier concentration and mobility for the $P_{O2}=12%$ were $6.36{\times}10^{18}cm^{-3}$ and $1.02cm^2V^{-1}s^{-1}$ respectively after annealing.

Relationship between Typhoon and El Niño·La Niña Events (태풍과 엘니뇨·라니냐 현상과의 관계)

  • Seol, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.37 no.6
    • /
    • pp.611-616
    • /
    • 2013
  • This paper studies relationship between typhoon and El Ni$\tilde{n}$o La Ni$\tilde{n}$a events by using 25 years meteorological data of KMA and JMA. The results are listed below. Annual mean number of typhoon's occurrence in El Ni$\tilde{n}$o event year is 23.9, and that in La Ni$\tilde{n}$a event year is 24.9. The number of typhoon's occurrence decreases in El Ni$\tilde{n}$o event year. Mean central minimum pressure and mean maximum wind speed in El Ni$\tilde{n}$o event year are 959.3hPa and 35.8m/s, and those in La Ni$\tilde{n}$a event year are 965.5hPa and 33.7m/s respectively. Intension of typhoon is stronger in El Ni$\tilde{n}$o event year than La Ni$\tilde{n}$a event year. To be more specific mean central minimum pressure is lower 6.2hPa and mean maximum wind speed is stronger 2.1m/s. This result is closely connected with sea area of typhoon's occurrence. Typhoons in El Ni$\tilde{n}$o event year are more likely to occur in east of 150E and south of 10N, but those in La Ni$\tilde{n}$a event year are more likely to occur in 120-150E and north of 20N. Typhoons which occur in east of 150E and south of 10N can be stronger because the typhoons move in broad sea area of high sea surface temperature in western North Pacific.

Optimizing Graphene Growth on the Electrolytic Copper Foils by Controlling Surface Condition and Annealing Procedure (전해구리막의 표면 조건과 어닐링 과정을 통한 그래핀 성장 최적화)

  • Woo Jin Lee;Ha Eun Go;Tae Rim Koo;Jae Sung Lee;Joon Woo Lee;Soun Gi Hong;Sang-Ho Kim
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.3
    • /
    • pp.192-200
    • /
    • 2023
  • Graphene, a two-dimensional material, has shown great potential in a variety of applications including microelectronics, optoelectronics, and graphene-based batteries due to its excellent electronic conductivity. However, the production of large-area, high-quality graphene remains a challenge. In this study, we investigated graphene growth on electrolytic copper foil using thermochemical vapor deposition (TCVD) to achieve a similar level of quality to the cold-rolled copper substrate at a lower cost. The combined effects of pre-annealing time, graphenized temperature, and partial pressure of hydrogen on graphene coverage and domain size were analyzed and correlated with the roughness and crystallographic texture of the copper substrate. Our results show that controlling the crystallographic texture of copper substrates through annealing is an effective way to improve graphene growth properties, which will potentially lead to more efficient and cost-effective graphene production. At a hydrogen partial pressure that is disadvantageous in graphene growth, electrolytic copper had an average size of 8.039 ㎛2, whereas rolled copper had a size of 19.092 ㎛2, which was a large difference of 42.1% compared to rolled copper. However, at the proper hydrogen partial pressure, electrolytic copper had an average size of 30.279 ㎛2 and rolled copper had a size of 32.378 ㎛2, showing a much smaller difference of 93.5% than before. This observation suggests this potentially leads the way for more efficient and cost-effective graphene production.