DOI QR코드

DOI QR Code

Optimizing Graphene Growth on the Electrolytic Copper Foils by Controlling Surface Condition and Annealing Procedure

전해구리막의 표면 조건과 어닐링 과정을 통한 그래핀 성장 최적화

  • Woo Jin Lee (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education) ;
  • Ha Eun Go (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education) ;
  • Tae Rim Koo (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education) ;
  • Jae Sung Lee (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education) ;
  • Joon Woo Lee (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education) ;
  • Soun Gi Hong (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education) ;
  • Sang-Ho Kim (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education)
  • 이우진 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 고하은 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 구태림 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 이재성 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 이준우 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 홍순기 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 김상호 (한국기술교육대학교 에너지신소재화학공학부)
  • Received : 2023.05.22
  • Accepted : 2023.06.22
  • Published : 2023.06.30

Abstract

Graphene, a two-dimensional material, has shown great potential in a variety of applications including microelectronics, optoelectronics, and graphene-based batteries due to its excellent electronic conductivity. However, the production of large-area, high-quality graphene remains a challenge. In this study, we investigated graphene growth on electrolytic copper foil using thermochemical vapor deposition (TCVD) to achieve a similar level of quality to the cold-rolled copper substrate at a lower cost. The combined effects of pre-annealing time, graphenized temperature, and partial pressure of hydrogen on graphene coverage and domain size were analyzed and correlated with the roughness and crystallographic texture of the copper substrate. Our results show that controlling the crystallographic texture of copper substrates through annealing is an effective way to improve graphene growth properties, which will potentially lead to more efficient and cost-effective graphene production. At a hydrogen partial pressure that is disadvantageous in graphene growth, electrolytic copper had an average size of 8.039 ㎛2, whereas rolled copper had a size of 19.092 ㎛2, which was a large difference of 42.1% compared to rolled copper. However, at the proper hydrogen partial pressure, electrolytic copper had an average size of 30.279 ㎛2 and rolled copper had a size of 32.378 ㎛2, showing a much smaller difference of 93.5% than before. This observation suggests this potentially leads the way for more efficient and cost-effective graphene production.

Keywords

Acknowledgement

이 논문은 2022년도 한국기술교육대학교 산학협력단 공용장비센터의 분석지원으로 연구되었음.

References

  1. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y, P. Chen, S. S. Pei, Graphene segregated on Ni surfaces and transferred to insulators, Appl. Phys. Lett., 93 (2008) 113103.
  2. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett., 9 (2009) 30-35. https://doi.org/10.1021/nl801827v
  3. F. Pizzocchero, B. S. Jessen, L. Gammelgaard, A. Andryieuski, P. R. Whelan, A. Shivayogimath, J. M. Caridad, J. Kling, N. Petrone, P. T. Tang, R. Malureanu, J. Hone, T. J. Booth, A. Lavrinenko, P. Boggild, Chemical vapor-deposited graphene on ultraflat copper foils for van der waals hetero-assembly, ACS Omega, 7 (2022) 22626-22632. https://doi.org/10.1021/acsomega.2c01946
  4. W. H. Huang, C. H. Lin, B. S. Lin, C. L. Sun, Low-temperature CVD graphene nanostructures on Cu and their corrosion properties, Materials, 11 (2018) 1989.
  5. X. Xu, Z. Zhang, J. Dong, D.Yi, L. Lin, J. Niu, M. Wu, R. Yin, M. Li, J. Zhou, S. Wang, J. Sun, X. Duan, P. Gao, Y. Jiang, X. Wu, H. Peng, R. Ruoff, Z. Liu, D. Yu, E. Wang, F. Ding, K. Liu, Ultrafast epitaxial growth of metre-sized single-crystal graphene, APS March Meeting 2018 (2018).
  6. A. W. Robertson, H. W. Jamie, Hexagonal single crystal domains of few-layer graphene on copper foils, Nano Lett., 11 (2011) 1182-1189. https://doi.org/10.1021/nl104142k
  7. L. He, Y. W. Liu, W. J. Tong, J. G. Lin, X. F. Wang, Surface energy engineering of Cu surface by strain: first-principles calculations, Surf. Rev. Lett., 20 (2013) 1350054.
  8. L. Gao, R. G. Jeffrey, P. G. Nathan, Epitaxial graphene on Cu (111), Nano Lett., 10 (2010) 3512-3516. https://doi.org/10.1021/nl1016706
  9. M. Andersen, J. S. Cingolani, R. Karsten, Ab initio thermodynamics of hydrocarbons relevant to graphene growth at solid and liquid Cu surfaces, J. Phys. Chem. C, 123 (2019) 22299-22310. https://doi.org/10.1021/acs.jpcc.9b05642
  10. I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, S. Smirnov, Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene, ACS Nano, 5 (2011) 6067-6076. https://doi.org/10.1021/nn201978y
  11. A. Alnuaimi, I. Almansouri, I. Saadat, A. Nayfeh, Toward fast growth of large area high quality graphene using a cold-wall CVD reactor, RSC Adv., 7 (2017) 51951-51957. https://doi.org/10.1039/C7RA10336K
  12. K. P. Sharma, S. M. Shinde, M. S. Rosmi, S. Sharma, G. Kalita, M. Tanemura, Effect of copper foil annealing process on large graphene domain growth by solid source-based chemical vapor deposition, J. Mater. Sci., 51 (2016) 7220-7228. https://doi.org/10.1007/s10853-016-0003-8
  13. S. Y. Cho, M. Kim, M. S. Kim, M. H. Lee, K. B. Kim, Effect of Cu surface treatment in graphene growth by chemical vapor deposition, Mater. Lett., 236 (2019) 403-407. https://doi.org/10.1016/j.matlet.2018.10.134
  14. Q. Yang, Z. Zhang, W. Zhu, G. Wang, Growth of large-area high-quality graphene on different types of copper foil preannealed under positive pressure H2 ambience, ACS Omega, 4 (2019) 5165-5171. https://doi.org/10.1021/acsomega.8b02538
  15. M. Huang, P. V. Bakharev, Z. J. Wang, M. Biswal, Z. Yang, S. Jin, B. Wang, H. J. Park, Y. Li, D. Qu, Y. Kwon, X. Chen, S. H. Lee, M. G. Willinger, W. J. Yoo, Z. Lee, R. S. Ruoff, Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/ Ni (111) foil, Nat. Nanotechnol., 15 (2020) 289-295. https://doi.org/10.1038/s41565-019-0622-8
  16. D. V. Smovzh, E. V. Boyko, I. A. Kostogrud, Modification of crystal structure of copper surface during graphene synthesis, J. Phys. Conf. Ser., 1128 (2018) 012109.
  17. D. Amram, L. Klinger, N. Gazit, H. Gluska, E. Rabkin, Grain boundary grooving in thin films revisited: the role of interface diffusion, Acta Mater.,69 (2014) 386-396. https://doi.org/10.1016/j.actamat.2014.02.008
  18. J. Zhang, D. Zuo, X. Pei, C. Mu, K. Chen, Q. Chen, G. Hou, Y. Tang, Effects of electrolytic copper foil roughness on lithium-ion battery performance, Metals, 12 (2022) 2110.