• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.035 seconds

Numerical Analysis of Discharge Flow in Type III Hydrogen Tank with Different Gas Models (Type III 수소 저장 용기에서 가스 모델(gas model)에 따른 배출(discharge) 현상의 수치 해석적 연구)

  • KIM, MOO-SUN;RYU, JOON-HYOUNG;JUNG, SU YEON;LEE, SEONG WOO;CHOI, SUNG WOONG
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.6
    • /
    • pp.558-563
    • /
    • 2020
  • Hydrogen is attracting attention as an alternative energy source as an eco-friendly fuel without emitting environmental pollutants. In order to use hydrogen as an energy source, technologies such as hydrogen production and storage must be used, and new storage methods are being studied. In this study, the behavior of hydrogen in the storage tank were numerically studied under high-pressure hydrogen discharge conditions in a Type III hydrogen tank. Numerical results were compared with the experimental value and the results were quantitatively analyzed to verify the numerical implementation. With the results of pressure and temperature values under a given discharge condition, the Redich-Kwong gas model showed the adequate models with the smallest error between numerical and experimental results.

Thermal volume change of saturated clays: A fully coupled thermo-hydro-mechanical finite element implementation

  • Wang, Hao;Qi, Xiaohui
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.561-573
    • /
    • 2020
  • The creep and consolidation behaviors of clays subjected to thermal cycles are of fundamental importance in the application of energy geostructures. This study aims to numerically investigate the physical mechanisms for the temperature-triggered volume change of saturated clays. A recently developed thermodynamic framework is used to derive the thermo-mechanical constitutive model for clays. Based on the model, a fully coupled thermo-hydro-mechanical (THM) finite element (FE) code is developed. Comparison with experimental observations shows that the proposed FE code can well reproduce the irreversible thermal contraction of normally consolidated and lightly overconsolidated clays, as well as the thermal expansion of heavily overconsolidated clays under drained heating. Simulations reveal that excess pore pressure may accumulate in clay samples under triaxial drained conditions due to low permeability and high heating rate, resulting in thermally induced primary consolidation. Results show that four major mechanisms contribute to the thermal volume change of clays: (i) the principle of thermal expansion, (ii) the decrease of effective stress due to the accumulation of excess pore pressure, (iii) the thermal creep, and (iv) the thermally induced primary consolidation. The former two mechanisms mainly contribute to the thermal expansion of heavily overconsolidated clays, whereas the latter two contribute to the noticeable thermal contraction of normally consolidated and lightly overconsolidated clays. Consideration of the four physical mechanisms is important for the settlement prediction of energy geostructures, especially in soft soils.

Development and performance evaluation of a cryogenic blower for HTS magnets

  • Kwon, Yonghyun;Mun, Jeongmin;Lee, Jaehwan;Seo, Geonghang;Kim, Dongmin;Lee, Changhyeong;Sim, Kideok;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.4
    • /
    • pp.57-61
    • /
    • 2020
  • Cooling by gas helium circulation can be used for various HTS (high temperature superconductor) magnets operating at 20~40 K, and a cryogenic blower is an essential device for circulating gas helium in the cooling system. The performance of the cryogenic blower is determined by various design parameters such as the impeller diameter, the blade number, the vane angle, the volute cross-sectional area, and the rotating speed. The trailing edge angle and the height of impeller vane are also key design factors in determining the blower performance. This study describes the design, fabrication and performance evaluation of cryogenic blower to produce a flow rate of 30 g/s at 5 bar, 35 K gas helium. The impeller shape is designed using a specific speed/specific diameter diagram and CFD analysis. After the fabrication of the cryogenic blower, a test equipment is also developed using a GM cryocooler. The measured flow rates and the pressure differences are compared with the design values at various rotating speeds and the results show a good agreement. Isentropic efficiency is also evaluated using the measured pressures and temperatures.

Atomization Characteristics of Three Types of Swirl Injectors (세 가지 유형 와류 분사기들의 미립화 특성)

  • Hadong Jung;Jonghyeon Ahn;Kyubok Ahn
    • Journal of ILASS-Korea
    • /
    • v.28 no.2
    • /
    • pp.75-88
    • /
    • 2023
  • In this paper, the atomization characteristics of bi-swirl coaxial injectors for a 420 N-class bipropellant thruster were investigated. Three types of injectors, namely closed-type, open-type, and screw-type, were manufactured and designed to have the same spray angle and injection pressure drop. Water was used as a simulant, and cold-flow tests were conducted under ambient temperature and pressure conditions. Since the inner and outer injectors were designed to be the same type, only the inner fuel injectors that were easy to measure were used. Using a phase doppler particle analyzer, the velocity and diameter of atomized droplets were measured. Closed-type swirl injector exhibited droplet distributions with relatively high velocities and small SMD compared to the other two injectors. Open-type swirl injector formed droplets with reverse velocities in the center region and had a large recirculation zone. Screw-type swirl injector showed a sharp decrease in droplet velocity and size with radial distance from the liquid film breakup point. For the same design requirements, the closed-type swirl injector has superior atomization performance.

Comparison of chemical resistance properties of anodized film according to anodized sealing treatment method of Al6061 alloy (Al6061 합금의 양극산화 봉공 처리 방법에 따른 양극산화 피막의 내화학 특성 비교)

  • Young Uk Han;Sang Sub Lee;Jun Seok Lee;Gibum Jang;Sung Youl Cho
    • Journal of Surface Science and Engineering
    • /
    • v.57 no.3
    • /
    • pp.201-207
    • /
    • 2024
  • This study compared the chemical resistance properties according to various sealing treatment methods for the anode film formed during the anodization process of Al6061 alloy. Al6061 aluminum was used in four different sealing treatment methods: boiling water sealing, lithium sealing, nickel sealing, and pressurized sealing, and each sample was evaluated for corrosion resistance through a 5% HCl bubble test and the microstructure was observed through a scanning electron microscope(SEM). According to the results, corrosion resistance increased as time and temperature increased in all sealing treatment methods. Relatively, corrosion resistance was high in the order of boiling water sealing, lithium sealing, nickel sealing, and pressure sealing, and the best corrosion resistance was found in pressure sealing. These research results can be helpful in selecting a process necessary to improve the efficiency and performance of anodizing process in the industrial field using aluminum alloys.

Design and structural analysis of spacers and their effect on hydraulic characteristics of liquid nitrogen cooled HTS cables

  • de Souza Isaac;Jadkar Ninad;Venkatesh Saravanan;Gour Abhay Singh
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.3
    • /
    • pp.17-26
    • /
    • 2024
  • The core of a High Temperature Superconducting (HTS) cable lies eccentrically inside the inner pipe of the cryostat in the absence of any supporting structures or spacers. This eccentricity may result in non-uniform cooling of the superconducting tapes. In this paper, three types of spacers with different geometries are designed with the aim to position the cable core centrally within the inner vessel of the cryostat. An optimum distance to be maintained between two such consecutive spacers is proposed. For an allowable radial deflection of 1.5 mm, the distance required to be maintained between two adjacent spacers was found to be 1.553 m. The spacers have been designed and studied structurally to operate at cryogenic temperatures. The pressure drop due to the presence of these spacers has been computed numerically and a comparison has been made between different types of spacers. It was found that amongst the three spacers designed, though spacer type B offers minimum pressure drop per unit length, spacer type C offers maximum surface area available for cooling the superconducting elements of the HTS power cable.

Perfluoropolymer Membranes of Tetrafluoroethylene and 2,2,4Trifluofo- 5Trifluorometoxy- 1,3Dioxole.

  • Arcella, V.;Colaianna, P.;Brinati, G.;Gordano, A.;Clarizia, G.;Tocci, E.;Drioli, E.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.39-42
    • /
    • 1999
  • Perfluoropolymers represent the ultimate resistance to hostile chemical environments and high service temperature, attributed to the presence of fluorine in the polymer backbone, i.e. to the high bond energy of C-F and C-C bonds of fluorocarbons. Copolymers of Tetrafluoroethylene (TEE) and 2, 2, 4Trifluoro-5Trifluorometoxy- 1, 3Dioxole (TTD), commercially known as HYFLON AD, are amorphous perfluoropolymers with glass transition temperature (Tg)higher than room temperature, showing a thermal decomposition temperature exceeding 40$0^{\circ}C$. These polymer systems are highly soluble in fluorinated solvents, with low solution viscosities. This property allows the preparation of self-supported and composite membranes with desired membrane thickness. Symmetric and asymmetric perfluoropolymer membranes, made with HYFLON AD, have been prepared and evaluated. Porous and not porous symmetric membranes have been obtained by solvent evaporation with various processing conditions. Asymmetric membranes have been prepared by th wet phase inversion method. Measure of contact angle to distilled water have been carried out. Figure 1 compares experimental results with those of other commercial membranes. Contact angles of about 120$^{\circ}$for our amorphous perfluoropolymer membranes demonstrate that they posses a high hydrophobic character. Measure of contact angles to hexandecane have been also carried out to evaluate the organophobic character. Rsults are reported in Figure 2. The observed strong organophobicity leads to excellent fouling resistance and inertness. Porous membranes with pore size between 30 and 80 nanometers have shown no permeation to water at pressures as high as 10 bars. However high permeation to gases, such as O2, N2 and CO2, and no selectivities were observed. Considering the porous structure of the membrane, this behavior was expected. In consideration of the above properties, possible useful uses in th field of gas- liquid separations are envisaged for these membranes. A particularly promising application is in the field of membrane contactors, equipments in which membranes are used to improve mass transfer coefficients in respect to traditional extraction and absorption processes. Gas permeation properties have been evaluated for asymmetric membranes and composite symmetric ones. Experimental permselectivity values, obtained at different pressure differences, to various single gases are reported in Tab. 1, 2 and 3. Experimental data have been compared with literature data obtained with membranes made with different amorphous perfluoropolymer systems, such as copolymers of Perfluoro2, 2dimethyl dioxole (PDD) and Tetrafluorethylene, commercialized by the Du Pont Company with the trade name of Teflon AF. An interesting linear relationship between permeability and the glass transition temperature of the polymer constituting the membrane has been observed. Results are descussed in terms of polymer chain structure, which affects the presence of voids at molecular scale and their size distribution. Molecular Dyanmics studies are in progress in order to support the understanding of these results. A modified Theodoru- Suter method provided by the Amorphous Cell module of InsightII/Discover was used to determine the chain packing. A completely amorphous polymer box of about 3.5 nm was considered. Last but not least the use of amorphous perfluoropolymer membranes appears to be ideal when separation processes have to be performed in hostile environments, i.e. high temperatures and aggressive non-aqueous media, such as chemicals and solvents. In these cases Hyflon AD membranes can exploit the outstanding resistance of perfluoropolymers.

  • PDF

Effects of Ambient Temperature Change on the Internal Pressure Change of Multi-Layered Subsea Pipeline (주위 온도변화가 다층구조 해저 파이프라인 내부 압력변화에 미치는 영향)

  • Yang, Seung Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.772-779
    • /
    • 2019
  • The subsea pipeline has received considerable attention as a high-value-added industry linked to the energy and steel industries including natural resource development. The design and installation of the subsea pipeline require a variety of key technologies to carry out the project. In particular, a thorough pre-verification process through pre-commissioning is essential for the safe operation of the subsea pipeline. The hydrotesting stage in the pre-commissioning process of the subsea pipeline is known to be affected significantly by the ambient temperature change; however, there is a little study based on the theoretical and numerical approach. In this study, the method of predicting the internal temperature change using the transient heat transfer method for the stage of hydrotesting during the pre-commissioning process of the subsea pipeline and the prediction method of the pressure variation in the pipeline using it were proposed. The predicted results were compared with field test results and its effectiveness was verified. The proposed analysis procedure is expected to contribute to the productivity improvement of the subsea pipeline installation project by enabling the prediction of pressure variation through pipeline heat transfer simulation from the initial design stage of the subsea pipeline installation project.

An analytical study on the thermal performance of multi-tube CO2 water heater (다중관형 CO2 급탕열교환기의 열적성능에 대한 해석연구)

  • Chang, Keun Sun;Choi, Youn Sung;Kim, Young-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.23-30
    • /
    • 2016
  • In this study, the heat transfer and pressure drop characteristics were evaluated for multi-tube $CO_2$ water heaters with lengths of 4.5 m and 7.5 m. The evaluation was done using the -NTU method, and the results were compared with experimental data. Water flows through the shell side of the water heater, while $CO_2$ flows through 8 inner tubes. The heater uses a counter-current design to maximize the heat transfer efficiency. The energy balance equation describing the flows of $CO_2$ and water for each node is set up using the section-by-section method. The calculated heat transfer rates agree well with the experimental data within ${\pm}5%$ error. The outlet water temperature decreased linearly with the increase of the water flow rate. The calculated heat transfer rates agreed well with the experimental data within ${\pm}3%$ error. The results show that the heat transfer rate increases almost linearly with the increase of water flow rate or $CO_2$ inlet temperature in both the 4.5-m and 7.5-m water heaters, whereas the water outlet temperature linearly decreases with the increase of the water flow rate. The comparison of the $CO_2$ pressure drop between the calculation and experiment results shows good agreement at the high $CO_2$ flow rate within 5 % error, but the value is about 20 % higher in the experimental pressure drop at the low $CO_2$ flow rate.

The Primary Research on oil Conversion Technology of biomass by Pyrolysis (열분해에 의한 바이오매스의 유류자원화 기술에 관한 기초 연구)

  • Chio, Hyuk-Jin;Yoo, Sun-Kyoung;Oh, Sang-Woo;Lee, Seung-Guk;Lee, Seung-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.112-117
    • /
    • 2007
  • This study aims to develop an alternative energy like oil made from marine organic waste by marine products waste, spent fishing nets. There are already many commercial examples and case studies based on the petroleum industry-refuse plastic or refuse tire, however, it is rare that a research developing alternative energy from food waste and organic waste. Therefore, this study investigated the oil made from thermal decomposition under the high temperature and high pressure condition, and examined the possibility for commercial use by testing its own characteristics. A bio-oil from thermal decomposition at $250^{\circ}C$ and 40 atm was hard to remove impurities because of its high viscosity, showed lower caloric value than heavy oil, and generated various gases which were not appropriate for the use of fuel. It is noticeable that thermal decomposition was occurred at $250{\pm}5^{\circ}C$ using steam pressure, which much lower compared to the existing method of thermal decomposition, more than $500^{\circ}C$. Since the high viscosity of bio-oil, it is necessary a further study to use as liquid fuel.

  • PDF