• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.036 seconds

DME and Diesel HCCI Combustion Characteristics (DME와 Diesel의 HCCI 연소특성 비교)

  • Lee, Joo-Kwang;Kook, Sang-Hoon;Park, Cheol-Woong;Bae, Choong-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.231-236
    • /
    • 2003
  • HCCI(Homogeneous Charge Compression Ignition) combustion is an advanced combustion process explained as a homogeneously premixed charge of a fuel where air is admitted into the cylinder and compression ignited. It has possibility to reduce NOx by spontaneous auto-ignition at multiple points that allows very lean combustion resulting in low combustion temperatures. Particulate matters (PM) could be also reduced by the homogeneous combustion and no fuel-rich zones. Injection timing is extremely advanced to achieve homogeneous charge where a diesel fuel could not be vaporized sufficiently due to low pressure and low temperature condition. Also the over-penetration could be a severe problem. The small injection angle and multi-hole injectors were applied to solve these problems. Dimethyl ether (DME) as an altenative fuel was also applied to relive the bad vaporization problem associated with early injection of diesel fuel. Neat DME has a very high cetane rating and high vapor pressure. Contained oxygen reduces soot during the combustion. Experimental result shows DME can be easily operated in an HCCI engine. PM shows almost zero value and NOx is reduced more than 90% compared to direct-injection diesel engine operating mode but problem of early ignition needs more investigation.

  • PDF

A Study on the Development of 3rd Stage IGG Blower for Shipbuilding Using CFD (CFD를 이용한 선박용 IGG Blower 개발에 관한 연구)

  • Lee, Jong-Jing;Yi, Chung-Seub;Jeong, Soon-Jae;Jang, Sung-Cheol;Kim, Chi-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1309-1314
    • /
    • 2008
  • I.G.G is abbreviation for Inert Gas Generator, High temperature in Cargo Tank it desulfurize, exhausted and froze the gas that combined brimstone element and soot, then supply Inert gas by blower, and mack tank inside incombustible range this is equipment that nip in the bud the explosion. The blower for suppling inactivated gas has big impeller with heavy weight to achieve the high pressure, it causes a delay for first operation time and too much load is delivered to motor, total destruction by fire of motor is happening frequently. On this research, we will reduce the size & weight of impeller and install it with several stage, it makes an effect for reducing the first operation time. We also intend to contribute to efficient IGG blower design by research a flowing & pressure specialty from the diameter of impeller, number of blade, and size of casing.

  • PDF

The Study for Improving the Combustion of Biodiesel Fuel using Multi-cavity Piston (Multi-cavity Piston에 의한 바이오디젤유의 연소성 향상에 관한 연구)

  • Bang, Joong Cheol;Kim, Yong Jae;Park, Chul Hwan
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.4
    • /
    • pp.26-33
    • /
    • 2015
  • American NREL (National Renewable Energy Laboratory) reported that BD20 could reduce PM, CO, SOx and cancerogenic matters by 13.6%, 9.3%, 17.6% and 13% respectively, compared to diesel fuel. BD20 has been being tested on garbage trucks and official vehicles at Seoul City, which is positive on air environment, but negative on combustion by higher viscosity in winter season. This study investigated the combustion characteristics by employing multi cavity piston for improving the deterioration of combustibility caused by the higher viscosity of the biodiesel fuel such as BD20 with the combustion flames taken by a high speed camera and the cylinder pressure diagram. A 4-cycle single cylinder diesel engine was remodeled to a visible 2-cycle engine for taking the flame photographs, which has a common-rail injection system. The test was done at laboratory temperature of about $4{\sim}5^{\circ}C$.

Fabrication and Characteristics of Continuous W-Cu FGM by SPS/Infiltration Process (SPS/용침 공정에 의한 W-Cu연속경사기능재료의 제초와 특성)

  • 신철균;석명진;오승탁;김지순;권영순
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.158-164
    • /
    • 2004
  • W-Cu composite has been used for the applications requiring both high strength, good thermal and electrical conductivity. A graded combination of W and Cu will reduce thermal stress concerned with heat conduction, maintaining good thermal conductivity and high mechanical strength. In the present work, an attempt was made to fabricate continuous W-Cu FGM by preparing the graded porous structure of W skeleton using spark plasma sintering (SPS) process followed by infiltrating Cu. The graded porous structure was prepared at 150$0^{\circ}C$ for 60s under pressure of 15MPa by SPS process using a graphite mold with varying crr)ss section in the longitudinal direction. Infiltration of Cu was performed at 115$0^{\circ}C$ for 1 hour under $H_2$. W-Cu composite with graded Cu composition of 14 to 27 wt% was finally prepared. In this process the gradient of composition could be conveniently controlled by varying the gradient of cross sectional area of graphite mold, temperature and pressure.

A Study on the $SF_6$ Plasma Characteristic for the etching process (에칭 프로세스를 위한 $SF_{6}/O_2$ 플라즈마 특성에 관한연구)

  • Ha, Jang-Ho;Jun, Yong-Woo;Shin, Yong-Chul;Youn, Young-Dae;Park, Won-Zoo;Lee, Kwang-Sik;Lee, Dong-In
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2074-2076
    • /
    • 2000
  • In this paper, RFICP equipment is designed and manufactured with the aid of high frequency discharge to produce uniform plasma with high density and large diameter. And $SF_6$ gas is used to investigate plasma characteristics. The electron density and temperature, potential dependence of $SF_6$ plasma in accordance with its operating pressure, gas flux and input power are measured by the method of Langmuir probe. The etching characteristics of the plasma is researched in accordance with operating pressure, gas flux, input power to apply to Silicon Wafer which is used in the field of semiconductor process. The proposed RFICP equipment, in this paper, has relatively excellent etching characteristics, and is thought to be element of oxidization-sheath etching facility in semiconductor manufacturing process.

  • PDF

Feasibility of Long Term Feed and Bleed Operation For Total Loss of Feedwater Event

  • Kwon, Young-Min;Song, Jin-Ho
    • Nuclear Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.257-264
    • /
    • 1996
  • The conventional Equipment Environment Qualification (EEQ) envelope is developed based on the containment responses during the design basis events. The Safety Depressurization System (SDS) design without In-containment Refueling Water Storage Tank (IRWST) adopted in the Ulchin 3&4 challenges the conventional EEQ envelope during long term Feed and Bleed (F&B) operation due to the direct discharge of high mass and energy into the containment. Therefore, it is necessary to confirm that the containment pressure and temperature history during the long term F&B operation does not violate the conventional EEQ envelope. However, this subject has never been quantitatively assessed before. To investigate the success path of long term F&B operation this paper analyzes the thermal hydraulic response of the containment and Reactor Coolant System (RCS) until the completion of depressurization and cooldown of RCS into Shutdown Cooling System (SCS) entry condition. It is found that the SCS entry condition can be reached within 6 hours without violating the EEQ curve by proper operation of SDS valves, High Pressure Safety Injection (HPSI) pumps and active Containment Heat Removal System (CHRS). The suggested strategy not only demonstrates the feasibility of long term F&B operation but also can be utilized in the preparation of Emergency Procedure Guidelines (EPGs)

  • PDF

An investigation of autoignition characteristics of kerosene by decomposed hydrogen peroxide (분해된 과산화수소를 이용한 케로신의 자연점화특성 조사)

  • Jo, Sung-Kwon;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.397-400
    • /
    • 2008
  • Traditional propellants which have a hypergolic characteristic have a high performance but also have disadvantages of toxicity and complex handling requirement. In order to replace these propellants, one of the alternatives is hydrogen peroxide which generates high temperature oxygen and water vapor after catalytic reaction. In this paper, autoignition characteristics of kerosene by decomposed hydrogen peroxide were investigated to perform fundamental research for designing a thruster using hydrogen peroxide and kerosene propellants. Contraction ratio, whether flame holder exists or not, and feeding pressure of propellants were selected as variables. From the experiments for different mixture ratio, we confirmed the ignition stability is strongly affected by a feeding pressure of propellants.

  • PDF

Cold Compaction Behavior of Nano and Micro Aluminum Powder under High Pressure

  • Kim, Dasom;Park, Kwangjae;Kim, Kyungju;Cho, Seungchan;Hirayama, Yusuke;Takagi, Kenta;Kwon, Hansang
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.141-147
    • /
    • 2019
  • In this study, micro-sized and nano-sized pure aluminum (Al) powders were compressed by unidirectional pressure at room temperature. Although neither type of Al bulk was heated, they had a high relative density and improved mechanical properties. The microstructural analysis showed a difference in the process of densification according to particle size, and the mechanical properties were measured by the Vickers hardness test and the nano indentation test. The Vickers hardness of micro Al and nano Al fabricated in this study was five to eight times that of ordinary Al. The grain refinement effect was considered to be one of the strengthening factors, and the Hall-Petch equation was introduced to analyze the improved hardness caused by grain size reduction. In addition, the effect of particle size and dispersion of aluminum oxide in the bulk were additionally considered. Based on these results, the present study facilitates the examination of the effect of particle size on the mechanical properties of compacted bulk fabricated by the powder metallurgy method and suggests the possible way to improve the mechanical properties of nano-crystalline powders.

Methods for improving meat protein digestibility in older adults

  • Seung Yun Lee;Ji Hyeop Kang;Da Young Lee;Jae Won Jeong;Jae Hyeon Kim;Sung Sil Moon;Sun Jin Hur
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.32-56
    • /
    • 2023
  • This review explores the factors that improve meat protein digestibility and applies the findings to the development of home meal replacements with improved protein digestion rates in older adults. Various methods improve the digestion rate of proteins, such as heat, ultrasound, high pressure, or pulse electric field. In addition, probiotics aid in protein digestion by improving the function of digestive organs and secreting enzymes. Plant-derived proteases, such as papain, bromelain, ficin, actinidin, or zingibain, can also improve the protein digestion rate; however, the digestion rate is dependent on the plant enzyme used and protein characteristics. Sous vide processing improves the rate and extent of protein digestibility, but the protein digestion rate decreases with increasing temperature and heating time. Ultrasound, high pressure, or pulsed electric field treatments degrade the protein structure and increase the proteolytic enzyme contact area to improve the protein digestion rate.

Analysis of production performance and sensory evaluation for shucking oyster using pressure (압력으로 박신한 굴 생산성능과 관능평가 분석)

  • Ok-sam KIM;Eun-Bi MIN;Doo-jin HWANG;Geum-Bum YOO
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.1
    • /
    • pp.35-43
    • /
    • 2023
  • Sensory evaluation of shucking pressure, pressure holding time, seeding method, difference in full shucking rate in the aquaculture area and shucking oyster was performed using an ultra-high pressure oyster shucking machine. The reaching time for each target pressure is 2.2-2.4 MPa/sec in the range of 180 MPa to 240 MPa. had a rate of pressure rise. There was a difference of 0.5-1.7℃ in the range of 24-27℃ in the seawater temperature before and after the pressure treatment inside the pressure vessel, but there was no specific increase or decrease in seawater temperature. When only the shucking pressure is increased without the pressure holding time, the critical shucking pressure at which the oyster shell is opened and the flesh is peeled in the range of 200 to 220 MPa. When the critical shucking pressure is reached, the oyster sample in the closed vessel is expected to be shucked by about 40%. If there is no pressure holding time when judged only by full shucking, an increase in pressure of about 1.5 MPa is required to further shuck 3% of the oyster population. The oyster samples cultivated in the south coast of Korea were subject to full shucking under the conditions of 220 MPa shucking pressure and two minutes (120 seconds) of pressure holding time, and the difference in the pressure of the oysters according to the oyster seeding method and the farming area was minute. Finally, the condition of 220 MPa of shucking pressure and three minutes of pressure holding time was the best at 1.52 when the result of the sensory evaluation performed manually was set to 1.0. Next was 1.4 under the conditions of 220 MPa of shucking pressure and one minute of pressure holding time (60 seconds), and 1.3 under the condition of 220 MPa and two minutes of pressure holding time (120 seconds). Therefore, it is considered that the most desirable shucking conditions, considering the efficiency and sensory evaluation results, are the conditions of 220 MPa shucking pressure and two to three minutes of pressure holding time.